【題目】如圖,A(0,1),M(3,2),N(4,4) , 動點(diǎn)P從點(diǎn)A出發(fā),沿y
軸以每秒1個單位長的速度向上移動,且過點(diǎn)P的直線l:y=-x+b也隨之移動,設(shè)移動時間為 t 秒.(直線y = kx+b平移時k不變)
(1)當(dāng)t=3時,求 l 的解析式;
(2)若點(diǎn)M,N位于l 的異側(cè),確定 t 的取值范圍.
【答案】(1)y=-x+4;(2)4<t<7.
【解析】
試題分析:(1)將A點(diǎn)的坐標(biāo)代入可得b=1,根據(jù)平移可得b=1+t,將t=3代入求出b的值;(2)將點(diǎn)M和N分別代入解析式分別求出t的值,得出范圍.
試題解析:(1)直線y=-x+b交y軸于點(diǎn)P(0,b),
由題意,得b>0,t≥0,b=1+t
當(dāng)t=3時,b=4
∴y=-x+4
(2)當(dāng)直線y=-x+b過M(3,2)時,2=-3+b解得b=5,
∴5=1+t∴t=4
當(dāng)直線y=-x+b過N(4,4)時,4=-4+b解得 b=8
∴8=1+t∴t=7
∴4<t<7
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在綜合實(shí)踐活動中,同學(xué)們制作了兩塊直角三角形硬紙板,一塊含有30°角,一塊含有45°角,并且有一條直角邊是相等的.現(xiàn)將含45°角的直角三角形硬紙板重疊放在含30°角的直角三角形硬紙板上,讓它們的直角完全重合.如圖2,若相等的直角邊AC長為12cm,求另一條直角邊沒有重疊部分BD的長(結(jié)果用根號表示).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖①、②,解答下面各題:
(1)圖①中,∠AOB=55°,點(diǎn)P在∠AOB內(nèi)部,過點(diǎn)P作PE⊥OA,PF⊥OB,垂足分別為E、F,求∠EPF的度數(shù)。
(2)圖②中,點(diǎn)P在∠AOB外部,過點(diǎn)P作PE⊥OA,PF⊥OB,垂足分別為E、F,那么∠P與∠O有什么關(guān)系?為什么?
(3)通過上面這兩道題,你能說出如果一個角的兩邊分別垂直于另一個角的兩邊,則這兩個角是什么關(guān)系?
(4)如果一個角的兩邊分別平行于另一個角的兩邊,則這兩個角是什么關(guān)系?(請畫圖說明結(jié)果,不需要過程)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=BC,BE⊥AC于點(diǎn)E,AD⊥BC于點(diǎn)D,
∠BAD=45°,AD與BE交于點(diǎn)F,連接CF.
(1)求證:BF=2AE;
(2)若CD=,求AD的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】探索與研究:
方法1:如圖(a),對任意的符合條件的直角三角形繞其銳角頂點(diǎn)旋轉(zhuǎn)90°所得,所以
∠BAE=90°,且四邊形ACFD是一個正方形,它的面積和四邊形ABFE面積相等,而四邊形ABFE面積等于Rt△BAE和Rt△BFE的面積之和,根據(jù)圖示寫出證明勾股定理的過程;
方法2:如圖(b),是任意的符合條件的兩個全等的Rt△BEA和Rt△ACD拼成的,你能根據(jù)圖示再寫一種證明勾股定理的方法嗎?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】要對一塊長60米,寬40米的矩形荒地ABCD進(jìn)行綠化和硬化、設(shè)計(jì)方案如圖所示,矩形P、Q為兩塊綠地,其余為硬化路面,P、Q兩塊綠地周圍的硬化路面寬都相等,并使兩塊綠地面積的和為矩形ABCD面積的,求P、Q兩塊綠地周圍的硬化路面的寬.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com