【題目】如圖,AB是半圓O的直徑,且AB=8,點C為半圓上的一點.將此半圓沿BC所在的直線折疊,若圓弧BC恰好過圓心O,則圖中陰影部分的面積是 . (結果保留π)

【答案】
【解析】解:過點O作OD⊥BC于點D,交 于點E,連接OC, 則點E是 的中點,由折疊的性質(zhì)可得點O為 的中點,
∴S弓形BO=S弓形CO ,
在Rt△BOD中,OD=DE= R=2,OB=R=4,
∴∠OBD=30°,
∴∠AOC=60°,
∴S陰影=S扇形AOC= =
故答案為:

過點O作OD⊥BC于點D,交 于點E,則可判斷點O是 的中點,由折疊的性質(zhì)可得OD= OE= R=2,在Rt△OBD中求出∠OBD=30°,繼而得出∠AOC,求出扇形AOC的面積即可得出陰影部分的面積.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知:Rt△ACB,BC=3,AC=4,延長BC至D,使得△ABD為等腰三角形,求CD的長。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,在梯形ABCD中,AB∥CD,∠B=90°,AB=2,CD=1,BC=m,P為線段BC上的一動點,且和B、C不重合,連接PA,過P作PE⊥PA交CD所在直線于E.設BP=x,CE=y.

(1)求y與x的函數(shù)關系式;
(2)若點P在線段BC上運動時,點E總在線段CD上,求m的取值范圍;
(3)如圖2,若m=4,將△PEC沿PE翻折至△PEG位置,∠BAG=90°,求BP長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(閱讀材料)

,即2<3,

∴1<<2.

﹣1的整數(shù)部分為1.

﹣1的小數(shù)部分為﹣2

(解決問題)9的小數(shù)部分是   ;

我們還可以用以下方法求一個無理數(shù)的近似值.

閱讀理解:求的近似值.

解:設=10+x,其中0<x<1,則107=(10+x)2,即107=100+20x+x2

因為0<x<1,所以0<x21,所以107≈100+20x,解之得x0.35,即的近似值為10.35.

理解應用:利用上面的方法求的近似值(結果精確到0.01).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為增強公民的節(jié)約意識,合理利用天然氣資源,某市自1月1日起對市區(qū)民用管道天然氣價格進行調(diào)整,實行階梯式氣價,調(diào)整后的收費價格如表所示:

每月用氣量

單價(元/m3

不超出75m3的部分

2.5

超出75m3不超出125m3的部分

a

超出125m3的部分

a+0.25


(1)若甲用戶3月份的用氣量為60m3 , 則應繳費元;
(2)若調(diào)價后每月支出的燃氣費為y(元),每月的用氣量為x(m3),y與x之間的關系如圖所示,求a的值及y與x之間的函數(shù)關系式;
(3)在(2)的條件下,若乙用戶2、3月份共用氣175m3(3月份用氣量低于2月份用氣量),共繳費455元,乙用戶2、3月份的用氣量各是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】媽媽買回6個粽子,其中1個花生餡,2個肉餡,3個棗餡.從外表看,6個粽子完全一樣,女兒有事先吃.
(1)若女兒只吃一個粽子,則她吃到肉餡的概率是;
(2)若女兒只吃兩個粽子,求她吃到的兩個都是肉餡的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△ABC中,AB=AC,DE垂直平分AB,BE⊥AC,AF⊥BC,則∠EFC=°.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知關于x的一元二次方程x2+2x+2k-2=0有兩個不相等的實數(shù)根.求k的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在正△ABC中,D、E分別在AC、AB上,且 , AE=BE , 則有( 。
A.△AED∽△ABC
B.△ADB∽△BED
C.△BCD∽△ABC
D.△AED∽△CBD

查看答案和解析>>

同步練習冊答案