若[x]表示不超過(guò)x的最大整數(shù),且滿足方程3x+5[x]-49=0,則x=
 
分析:在一個(gè)方程中有些變量在取整符號(hào)中,有些變量在取整符號(hào)外,這類(lèi)方程一般要利用不等式[x]≤x<[x]+1,求出[x]的范圍,然后再代入原方程求出x的值.
解答:解:令[x]=n,代入原方程得3x+5n-49=0,即x=
49-5n
3

又∵[x]≤x<[x]+1,∴n≤
49-5n
3
<n+1.
整理得3n≤49-5n<3n+3,即
46
8
<n≤
49
8
,∴n=6.
代入原方程得3x+5×6-49=0,解得x=
19
3

經(jīng)檢驗(yàn),x=
19
3
是原方程的解.
點(diǎn)評(píng):通過(guò)本題我們總結(jié)解這類(lèi)方程的一般步驟:
(1)設(shè)取整部分為n代入原方程,并把x表示為n的形式;
(2)利用[x]≤x<[x]+1可得到關(guān)于n的不等式,并求出n的可能值;
(3)分別將這些“可能值”代入原方程進(jìn)行求解;
(4)驗(yàn)根,在第(2)步運(yùn)算時(shí),實(shí)際上將n的范圍擴(kuò)大了,也就將x的范圍擴(kuò)大了,所以必須驗(yàn)根.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

若[x]表示不超過(guò)x的最大整數(shù)(如[π]=3,[-2
2
3
]=-3
等),則[
1
2-
1×2
]+[
1
3-
2×3
]+…+[
1
2001-
2000×2001
]
=
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

若[x]表示不超過(guò)x的最大整數(shù)(如[π]=3,[-2
2
3
]=-3
等),則[
1
2-
1×2
]+[
1
3-
2×3
]+…+[
1
2011-
2010×2011
]
=
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•田陽(yáng)縣一模)若[x]表示不超過(guò)x的最大整數(shù)(如[3
3
4
]=3,[-π]=-4等),根據(jù)定義計(jì)算下面算式:[
1
2-
1×2
]+[
1
3-
2×3
]+…+[
1
2012-
2011×2012
]=
2011
2011

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

若[x]表示不超過(guò)x的最大整數(shù),那么[-π][π]=
-64
-64

查看答案和解析>>

同步練習(xí)冊(cè)答案