如圖,四邊形ABCD是平行四邊形,AC是對角線,BE⊥AC,垂足為E,DF⊥AC,垂足為F.求證:DF=BE.

【答案】分析:根據(jù)平行四邊形的對邊相等得出BC=AD,再由兩直線平行內錯角相等可得出∠BCA=∠DAC,從而可判斷出△CEB≌△AFD,利用全等三角形的性質即可得出結論.
解答:證明:∵四邊形ABCD是平行四邊形.
∴BC=AD,BC∥AD.
∴∠BCA=∠DAC
∵BE⊥AC,DF⊥AC.
∴∠CEB=∠AFD=90°.
∴△CEB≌△AFD
∴BE=DF.
點評:本題考查了平行四邊形的性質,全等三角形的判定和性質,屬于基礎題,關鍵是利用全等的知識證明線段的相等,這是經(jīng)常用到的,同學們要注意掌握.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

如圖,四邊形ABCD的對角線AC與BD互相垂直平分于點O,設AC=2a,BD=2b,請推導這個四邊形的性質.(至少3條)
(提示:平面圖形的性質通常從它的邊、內角、對角線、周長、面積等入手.)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,四邊形ABCD的對角線AC、BD交于點P,過點P作直線交AD于點E,交BC于點F.若PE=PF,且AP+AE=CP+CF.
(1)求證:PA=PC.
(2)若BD=12,AB=15,∠DBA=45°,求四邊形ABCD的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,四邊形ABCD,AB=AD=2,BC=3,CD=1,∠A=90°,求∠ADC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,四邊形ABCD為正方形,E是BC的延長線上的一點,且AC=CE,求∠DAE的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,四邊形ABCD是正方形,點E是BC的中點,∠AEF=90°,EF交正方形外角的平分線CF于F.

(I)求證:AE=EF;
(Ⅱ)若將條件中的“點E是BC的中點”改為“E是BC上任意一點”,其余條件不變,則結論AE=EF還成立嗎?若成立,請證明;若不成立,請說明理由.

查看答案和解析>>

同步練習冊答案