精英家教網 > 初中數學 > 題目詳情

定義:只有一組對角是直角的四邊形叫做損矩形,連結它的兩個非直角頂點的線段叫做這個損矩形的直徑.

⑴如圖1,損矩形ABCD,∠ABC=∠ADC=90°,則該損矩形的直徑是線段         .

⑵在線段AC上確定一點P,使損矩形的四個頂點都在以P為圓心的同一圓上(即損矩形的四個頂點在同一個圓上),請作出這個圓,并說明你的理由. 友情提醒:“尺規(guī)作圖”不要求寫作法,但要保留作圖痕跡.

    ⑶如圖2,△ABC中,∠ABC=90°,以AC為一邊向形外作菱形ACEF,D為菱形ACEF的中心,連結BD,當BD平分∠ABC時,判斷四邊形ACEF為何種特殊的四邊形?請說明理由. 若此時AB=3,BD,求BC的長.

 


解:⑴AC;

⑵作圖如圖;

∵點P為AC中點,∴PA=PC=AC.

∵∠ABC=∠ADC=90°,∴BP=DP=AC,∴PA=PB=PC=PD,

∴點A、B、C、D在以P為圓心,AC為半徑的同一個圓上.  

⑶解:∵菱形ACEF,∴∠ADC=90°AE=2AD,EC=2CD,∴四邊形ABCD為損矩形,

∴由⑵可知,點A、B、C、D在同一個圓上.

AM平分∠BAD,∴∠ABD=∠CBD=45°,∴,∴ADCD,

∴四邊形ACEF為正方形.

∵點BD平分∠ABC,BD=,∴點D到AB、BC的距離h為4,

=6. ,

,

,∴=6+2BC

∴BC=5或BC=-3(舍去),∴BC=5.

 

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

如圖①,在直角坐標系中,點A的坐標為(1,0),以OA為邊在第一象限內作正方形OABC,點D是x軸正半軸上一動點(OD>1),連接BD,以BD為邊在第一象限內作正方形DBFE,設M為正方形DBFE的中心,直線MA交y軸于點N.如果定義:只有一組對角是直角的四邊形叫做損矩形.
(1)試找出圖1中的一個損矩形;
(2)試說明(1)中找出的損矩形的四個頂點一定在同一個圓上;
(3)隨著點D位置的變化,點N的位置是否會發(fā)生變化?若沒有發(fā)生變化,求出點N的坐標;若發(fā)生變化,請說明理由;
(4)在圖②中,過點M作MG⊥y軸于點G,連接DN,若四邊形DMGN為損矩形,求D點坐精英家教網標.

查看答案和解析>>

科目:初中數學 來源: 題型:

21、定義:只有一組對角是直角的四邊形叫做損矩形,連接它的兩個非直角頂點的線段叫做這個損矩形的直徑.(1)如圖,損矩形ABCD,∠ABC=∠ADC=90°,則該損矩形的直徑是線段
AC

(2)①在損矩形ABCD內是否存在點O,使得A、B、C、D四個點都在以O為圓心的同一圓上,如果有,請指出點O的具體位置;
②如圖,直接寫出符合損矩形ABCD的兩個結論(不能再添加任何線段或點).

查看答案和解析>>

科目:初中數學 來源: 題型:

定義:只有一組對角是直角的四邊形叫做損矩形,連接它的兩個非直角頂點的線段叫做這個損矩形的直徑.
(1)如圖1,損矩形ABCD,∠ABC=∠ADC=90°,則該損矩形的直徑是線段
 

(2)在線段AC上確定一點P,使損矩形的四個頂點都在以P為圓心的同一圓上(即損矩形的四個頂點在同一個圓上),請作出這個圓,并說明你的理由.友情提醒:“尺規(guī)作圖”不要求寫作法,但要保留作圖痕跡.
(3)如圖2,△ABC中,∠ABC=90°,以AC為一邊向形外作菱形ACEF,D為菱形ACEF的中心,連接BD,當BD平分∠ABC時,判斷四邊形ACEF為何種特殊的四邊形?請說明理由.若此時AB=3,BD=4
2
,求BC的長.
精英家教網精英家教網

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖,已知正方形ABCD的邊長為1,點E是射線DA一動點(DE>1),連結BE,以BE為邊在BE上方作正方形BEFG,設M為正方形BEFG的中心,如果定義:只有一組對角是直角的四邊形叫做損矩形.
(1)試找出圖中的一個損矩形并簡單說明理由.
(2)連接AM,無論點E位置怎樣變化,求證:DB∥AM.

查看答案和解析>>

科目:初中數學 來源:2013屆江蘇揚州江都區(qū)麾村中學九年級上學期期中考試數學試卷(帶解析) 題型:解答題

如圖1,在直角坐標系中,點A的坐標為(1,0),以OA為邊在第一象限內作正方形OABC,點D是軸正半軸上一動點(OD>1),連結BD,以BD為邊在第一象限內作正方形DBFE,設M為正方形DBFE的中心,直線MA交軸于點N.如果定義:只有一組對角是直角的四邊形叫做損矩形.
(1)試找出圖1中的一個損矩形;
(2)試說明(1)中找出的損矩形的四個頂點在同一個圓上;
(3)隨著點D位置的變化,點N的位置是否會發(fā)生變化?若沒有發(fā)生變化,求出點N的坐標;若發(fā)生變化,請說明理由;
(4)在圖2中,過點M作MG⊥軸于點G,連結DN,若四邊形DMGN為損矩形,求D點坐標.

查看答案和解析>>

同步練習冊答案