解方程:x2﹣x+2=0.

 

解:x2﹣x+2=0,

∵b2﹣4ac=(﹣1)2﹣4×1×2=﹣7<0,

∴此方程無解.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

解下列方程:
(1)
11
9
z+
2
7
=
2
9
z-
5
7
;
(2)
1
2
(2x-1)-3(
2
3
x+
1
2
)=
x
2

(3)
3x-2
5
+2=
x+6
5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

課本第五冊第65頁有一題:
已知一元二次方程ax2-
2
bx+c=0的兩個根滿足|x1-x2|=
2
,且a,b,c分別是△ABC的∠A,∠B,∠C的對邊.若a=c,求∠B的度數(shù).
小敏解得此題的正確答案“∠B=120°”后,思考以下問題,請你幫助解答.
(1)若在原題中,將方程改為ax2-
3
bx+c=0,要得到∠B=120°,而條件“a=c”不變,那么應(yīng)對條件中的|x1-x2|的值作怎樣的改變并說明理由;
(2)若在原題中,將方程改為ax2-
n
bx+c=0(n為正整數(shù),n≥2),要得到∠B=120°,而條件“a=c”不變,那么條件中的|x1-x2|的值應(yīng)改為多少?(不必說明理由)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:閱讀理解

(2013•鄭州模擬)閱讀某同學(xué)解分式方程的具體過程,回答后面問題.
解方程
2
x
+
x
x-3
=1

解:原方程可化為:
2(x-3)+x2=x(x-3).…①
2x-6+x2=x2-3x.…②
2x-3x+x2-x2=6.…③
∴x=-6.…④

檢驗:當x=-6時,各分母均不為0,
∴x=-6是原方程的解.…⑤
請回答:(1)第①步變形的依據(jù)是
等式的性質(zhì)
等式的性質(zhì)

(2)從第
步開始出現(xiàn)了錯誤,這一步錯誤的原因是
移項不變號
移項不變號

(3)原方程的解為
x=
6
5
x=
6
5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:閱讀理解

閱讀某同學(xué)解分式方程的具體過程,回答后面問題.解方程
2
x
+
x
x-3
=1

解:原方程可化為:
2(x-3)+x2=x(x-3).…①
2x-6+x2=x2-3x.…②
2x-3x+x2-x2=6.…③
∴x=-6.…④

檢驗:當x=-6時,各分母均不為0,∴x=-6是原方程的解請回答:
(1)第①步變形的依據(jù)是
等式的基本性質(zhì)
等式的基本性質(zhì)
;
(2)從第
 步開始出現(xiàn)了錯誤,這一步錯誤的原因是
移項不變號
移項不變號

(3)原方程的解為
x=
6
5
x=
6
5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

我們已學(xué)會了用“兩邊夾”的方法,根據(jù)不同的精確度要求,估算
2
的取值范圍,我們還可以用“逼近”的方法,求出它的近似值.
x 1.40 1.41 1.42 1.43
x2 1.96 1.9881 2.0164 2.0449
2-1.9881=0.0119,2.0164-2=0.0164,0.0119<0.0164
可見1.9881比2.0164更逼近2,當精確度為0.01時,
2
的近似值為1.41.
下面,我們用同樣的方法估計方程x2+2x=6其中一個解的近似值.
x 1.63 1.64 1.65 1.66
x2+2x 5.9169 5.9696 6.0225 6.0756
根據(jù)上表,方程x2+2x=6的一個解約是
1.65
1.65
.(精確到0.01)

查看答案和解析>>

同步練習(xí)冊答案