【題目】如圖,直線與相交于點(diǎn),與軸交于點(diǎn),與軸交于點(diǎn),與軸交于點(diǎn).下列說(shuō)法錯(cuò)誤的是( ).
A.B.
C.D.直線的函數(shù)表達(dá)式為
【答案】D
【解析】
由待定系數(shù)法分別求出直線m,n的解析式,即可判斷D,由解析式可求A點(diǎn)坐標(biāo),進(jìn)而由坐標(biāo)系中兩點(diǎn)距離公式可得AC=BC=2,即可判斷C正確,再由SAS可得,可判斷B正確,進(jìn)而可得.
解:如圖,設(shè)直線m的解析式為
把,代入得,,
解得:,
∴直線的函數(shù)表達(dá)式為;,所以D錯(cuò)誤;
設(shè)直線的解析式為,
把,代入得,解得,
所以的解析式為,
當(dāng)時(shí),,則,
又∵,,
∴,
,
則,AB=4所以C正確;
, ,
BD=4,
∴AB=BD
在和中,
≌(SAS),故B正確,
,
;故A正確;
綜上所述:ABC正確,D錯(cuò)誤,
故選:D.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在一單位為1的方格紙上,,,…,都是斜邊在軸上,斜邊長(zhǎng)分別為2,4,6,…的等腰直角三角形,若的頂點(diǎn)坐標(biāo)分別為,,,則依圖中所示規(guī)律,的坐標(biāo)為( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知在△ABC,△ADE中,∠BAC=∠DAE=90°,AB=AC,AD=AE,點(diǎn)C,D,E三點(diǎn)在同一條直線上,連接BD,BE.以下四個(gè)結(jié)論:
①BD=CE;②∠ACE+∠DBC=45°;③BD⊥CE;④∠BAE+∠DAC=180°.其中結(jié)論正確的個(gè)數(shù)是( )
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線與軸交于,兩點(diǎn),與軸交于點(diǎn),頂點(diǎn)為,以為直徑作D.下列結(jié)論:①拋物線的對(duì)稱(chēng)軸是直線x=3;②⊙D的面積為16π;③拋物線上存在點(diǎn)E,使四邊形ACED為平行四邊形;④直線CM與⊙D相切.其中正確結(jié)論的個(gè)數(shù)是( )
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知矩形ABCD,點(diǎn)E在邊AD上,連接BE將△ABE沿BE翻折,得到△MBE,M點(diǎn)剛好在CD邊上,若AD長(zhǎng)為2,AB長(zhǎng)為,則AE=_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,∠A=60°,AC=6,將△ABC繞點(diǎn)C按逆時(shí)針?lè)较蛐D(zhuǎn)得到△A'B'C',此時(shí)點(diǎn)A'恰好在AB邊上,則點(diǎn)B'與點(diǎn)B之間的距離為( 。
A. 12 B. 6 C. 6 D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC和△DEF關(guān)于點(diǎn)O成中心對(duì)稱(chēng).
(1)作出它們的對(duì)稱(chēng)中心O,并簡(jiǎn)要說(shuō)明作法;
(2)若AB=6,AC=5,BC=4,求△DEF的周長(zhǎng);
(3)連接AF,CD,試判斷四邊形ACDF的形狀,并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:直線,點(diǎn),分別是直線,上任意兩點(diǎn),在直線上取一點(diǎn),使,連接,在直線上任取一點(diǎn),作,交直線于點(diǎn).
(1)如圖1,若點(diǎn)是線段上任意一點(diǎn),交于,求證:;
(2)如圖2,點(diǎn)在線段的延長(zhǎng)線上時(shí),與互為補(bǔ)角,若,請(qǐng)判斷線段與的數(shù)量關(guān)系,并說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com