已知梯形ABCD,AD∥BC,AB⊥BC,AD=1,AB=2,BC=3,
問(wèn)題1:如圖1,P為AB邊上的一點(diǎn),以PD,PC為邊作平行四邊形PCQD,請(qǐng)問(wèn)對(duì)角線PQ,DC的長(zhǎng)能否相等,為什么?
問(wèn)題2:如圖2,若P為AB邊上一點(diǎn),以PD,PC為邊作平行四邊形PCQD,請(qǐng)問(wèn)對(duì)角線PQ的長(zhǎng)是否存在最小值?如果存在,請(qǐng)求出最小值,如果不存在,請(qǐng)說(shuō)明理由.
問(wèn)題3:若P為AB邊上任意一點(diǎn),延長(zhǎng)PD到E,使DE=PD,再以PE,PC為邊作平行四邊形PCQE,請(qǐng)?zhí)骄繉?duì)角線PQ的長(zhǎng)是否也存在最小值?如果存在,請(qǐng)求出最小值,如果不存在,請(qǐng)說(shuō)明理由.
問(wèn)題4:如圖3,若P為DC邊上任意一點(diǎn),延長(zhǎng)PA到E,使AE=nPA(n為常數(shù)),以PE、PB為邊作平行四邊形PBQE,請(qǐng)?zhí)骄繉?duì)角線PQ的長(zhǎng)是否也存在最小值?如果存在,請(qǐng)求出最小值,如果不存在,請(qǐng)說(shuō)明理由.
解:?jiǎn)栴}1:對(duì)角線PQ與DC不可能相等。理由如下:
∵四邊形PCQD是平行四邊形,若對(duì)角線PQ、DC相等,則四邊形PCQD是矩形,
∴∠DPC=90°。
∵AD=1,AB=2,BC=3,∴DC=2。
設(shè)PB=x,則AP=2-x,
在Rt△DPC中,PD2+PC2=DC2,即x2+32+(2-x)2+12=8,化簡(jiǎn)得x2-2x+3=0,
∵△=(-2)2-4×1×3=-8<0,∴方程無(wú)解。
∴不存在PB=x,使∠DPC=90°!鄬(duì)角線PQ與DC不可能相等。
問(wèn)題2:存在。理由如下:
如圖2,在平行四邊形PCQD中,設(shè)對(duì)角線PQ與DC相交于點(diǎn)G,
則G是DC的中點(diǎn)。過(guò)點(diǎn)Q作QH⊥BC,交BC的延長(zhǎng)線于H。
∵AD∥BC,∴∠ADC=∠DCH,即∠ADP+∠PDG=∠DCQ+∠QCH。
∵PD∥CQ,∴∠PDC=∠DCQ。∴∠ADP=∠QCH。
又∵PD=CQ,∴Rt△ADP≌Rt△HCQ(AAS)!郃D=HC。
∵AD=1,BC=3,∴BH=4,
∴當(dāng)PQ⊥AB時(shí),PQ的長(zhǎng)最小,即為4。
問(wèn)題3:存在。理由如下:
如圖3,設(shè)PQ與DC相交于點(diǎn)G,
∵PE∥CQ,PD=DE,∴。
∴G是DC上一定點(diǎn)。
作QH⊥BC,交BC的延長(zhǎng)線于H,
同理可證∠ADP=∠QCH,∴Rt△ADP∽R(shí)t△HCQ!。
∵AD=1,∴CH=2!郆H=BG+CH=3+2=5。
∴當(dāng)PQ⊥AB時(shí),PQ的長(zhǎng)最小,即為5。
問(wèn)題4:如圖3,設(shè)PQ與AB相交于點(diǎn)G,
∵PE∥BQ,AE=nPA,∴。
∴G是DC上一定點(diǎn)。
作QH∥PE,交CB的延長(zhǎng)線于H,過(guò)點(diǎn)C作CK⊥CD,交QH的延長(zhǎng)線于K。
∵AD∥BC,AB⊥BC,
∴∠D=∠QHC,∠DAP+∠PAG=∠QBH+∠QBG=90°
∠PAG=∠QBG,
∴∠QBH=∠PAD。∴△ADP∽△BHQ,∴,
∵AD=1,∴BH=n+1!郈H=BH+BC=3+n+1=n+4。
過(guò)點(diǎn)D作DM⊥BC于M,則四邊形ABND是矩形。
∴BM=AD=1,DM=AB=2!郈M=BC-BM=3-1=2=DM。
∴∠DCM=45°。∴∠KCH=45°。
∴CK=CH•cos45°= (n+4),
∴當(dāng)PQ⊥CD時(shí),PQ的長(zhǎng)最小,最小值為 (n+4)。
解析
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
A、6 | ||
B、8 | ||
C、4 | ||
D、4
|
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
3 |
29 |
2 |
3 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
| ||
3 |
| ||
3 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com