【題目】如圖,已知AB∥CD,現(xiàn)將一直角三角形PMN放入圖中,其中∠P=90°,PM交AB于點E,PN交CD于點F
(1)當(dāng)△PMN所放位置如圖①所示時,則∠PFD與∠AEM的數(shù)量關(guān)系為;
(2)當(dāng)△PMN所放位置如圖②所示時,求證:∠PFD﹣∠AEM=90°;
(3)在(2)的條件下,若MN與CD交于點O,且∠DON=30°,∠PEB=15°,求∠N的度數(shù).
【答案】
(1)∠PFD+∠AEM
(2)
解:證明:如圖②所示:
∵AB∥CD,
∴∠PFD+∠BHF=180°,
∵∠P=90°,
∴∠BHF+∠2=90°,
∵∠2=∠AEM,
∴∠BHF=∠PHE=90°﹣∠AEM,
∴∠PFD+90°﹣∠AEM=180°,
∴∠PFD﹣∠AEM=90°;
(3)
解:如圖③所示:
∵∠P=90°,
∴∠PHE=90°﹣∠FEB=90°﹣15°=75°,
∵AB∥CD,
∴∠PFC=∠PHE=75°,
∵∠PFC=∠N+∠DON,
∴∠N=75°﹣30°=45°.
【解析】解:(1)作PG∥AB,如圖①所示:
則PG∥CD,
∴∠PFD=∠1,∠2=∠AEM,
∵∠1+∠2=∠P=90°,
∴∠PFD+∠AEM=∠1+∠2=90°,
所以答案是:∠PFD+∠AEM;
【考點精析】認(rèn)真審題,首先需要了解平行線的性質(zhì)(兩直線平行,同位角相等;兩直線平行,內(nèi)錯角相等;兩直線平行,同旁內(nèi)角互補(bǔ)).
科目:初中數(shù)學(xué) 來源: 題型:
【題目】伍家崗區(qū)系1億年前地殼運動隆起的陸地,大約在70000000年前形成,數(shù)據(jù)70000000用科學(xué)記數(shù)法表示為( )
A. 70000000 B. 0.7×108
C. 7×107 D. 70×106
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列數(shù)據(jù)不能確定物體位置的是( 。
A. 5樓6號 B. 北偏東30°
C. 大學(xué)路19號 D. 東經(jīng)118°,北緯36°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】畫圖并填空:如圖,方格紙中每個小正方形的邊長都為1.在方格紙中將△ABC經(jīng)過一次平移后得到△A′B′C′,圖中標(biāo)出了點C的對應(yīng)點C′.
(1)請畫出平移后的△A′B′C′;
(2)若連接AA′,BB′,則這兩條線段之間的關(guān)系是;
(3)利用網(wǎng)格畫出△ABC 中AC邊上的中線BD;
(4)利用網(wǎng)格畫出△ABC 中AB邊上的高CE;
(5)△A′B′C′面積為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】 如圖,兩個等邊△ABD,△CBD的邊長均為1,將△ABD沿AC方向向右平移到△A′B′D′的位置,得到圖2,則陰影部分的周長為( )
A.1 B.2 C.2.5 D.3
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,Rt△ABC的三個頂點分別是A(﹣8,3),B(﹣4,0),C(﹣4,3),∠ABC=α°.拋物線經(jīng)過點C,且對稱軸為x=,并與y軸交于點G.
(1)求拋物線的解析式及點G的坐標(biāo);
(2)將Rt△ABC沿x軸向右平移m個單位,使B點移到點E,然后將三角形繞點E順時針旋轉(zhuǎn)α°得到△DEF.若點F恰好落在拋物線上.
①求m的值;
②連接CG交x軸于點H,連接FG,過B作BP∥FG,交CG于點P,求證:PH=GH.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在△ABC中,∠ACB=90°,點D,E分別為AC,AB的中點,點F在BC的延長線上,且∠CDF=∠A.求證:四邊形DECF為平行四邊形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在下列條件中,①∠A+∠B=∠C; ②∠A:∠B:∠C=1:2:3; ③∠A= ∠B= ∠C; ④∠A=∠B=2∠C; ⑤∠A=2∠B=3∠C,能確定△ABC為直角三角形的條件有( )
A.2個
B.3個
C.4個
D.5個
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com