【題目】閱讀下面材料: 小騰遇到這樣一個(gè)問(wèn)題:如圖1,在△ABC中,點(diǎn)D在線段BC上,∠BAD=75°,∠CAD=30°,AD=2,BD=2DC,求AC的長(zhǎng).
小騰發(fā)現(xiàn),過(guò)點(diǎn)C作CE∥AB,交AD的延長(zhǎng)線于點(diǎn)E,通過(guò)構(gòu)造△ACE,經(jīng)過(guò)推理和計(jì)算能夠使問(wèn)題得到解決(如圖 2).
請(qǐng)回答:求∠ACE的度數(shù),AC的長(zhǎng).
參考小騰思考問(wèn)題的方法,解決問(wèn)題:
如圖 3,在四邊形 ABCD中,∠BAC=90°,∠CAD=30°,∠ADC=75°,AC與BD交于點(diǎn)E,AE=2,BE=2ED,求BC的長(zhǎng).
【答案】解:∠ABC+∠ACB=∠ECD+∠ACB=∠ACE=180°﹣75°﹣30°=75°, ∠E=75°,BD=2DC,
∴AD=2DE,
AE=AD+DE=3,
∴AC=AE=3,
∠ACE=75°,AC的長(zhǎng)為3.
過(guò)點(diǎn)D作DF⊥AC于點(diǎn)F.
∵∠BAC=90°=∠DFA,
∴AB∥DF,
∴△ABE∽△FDE,
∴ =2,
∴EF=1,AB=2DF.
在△ACD中,∠CAD=30°,∠ADC=75°,
∴∠ACD=75°,AC=AD.
∵DF⊥AC,
∴∠AFD=90°,
在△AFD中,AF=2+1=3,∠FAD=30°,
∴DF=AFtan30°= ,AD=2DF=2 .
∴AC=AD=2 ,AB=2DF=2 .
∴BC= =2 .
【解析】根據(jù)相似的三角形的判定與性質(zhì),可得 =2,根據(jù)等腰三角形的判定,可得AE=AC,根據(jù)正切函數(shù),可得DF的長(zhǎng),根據(jù)直角三角形的性質(zhì),可得AB與DF的關(guān)系,根據(jù)勾股定理,可得答案.
【考點(diǎn)精析】認(rèn)真審題,首先需要了解勾股定理的概念(直角三角形兩直角邊a、b的平方和等于斜邊c的平方,即;a2+b2=c2),還要掌握相似三角形的判定與性質(zhì)(相似三角形的一切對(duì)應(yīng)線段(對(duì)應(yīng)高、對(duì)應(yīng)中線、對(duì)應(yīng)角平分線、外接圓半徑、內(nèi)切圓半徑等)的比等于相似比;相似三角形周長(zhǎng)的比等于相似比;相似三角形面積的比等于相似比的平方)的相關(guān)知識(shí)才是答題的關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知二次函數(shù)y=ax2+bx+c的象經(jīng)過(guò)A(﹣1,0)、B(3,0)、N(2,3)三點(diǎn),且與y軸交于點(diǎn)C.
(1)求這個(gè)二次函數(shù)的解析式,并寫(xiě)出頂點(diǎn)M及點(diǎn)C的坐標(biāo);
(2)若直線y=kx+d經(jīng)過(guò)C、M兩點(diǎn),且與x軸交于點(diǎn)D,試證明四邊形CDAN是平行四邊形;
(3)點(diǎn)P是這個(gè)二次函數(shù)的對(duì)稱軸上一動(dòng)點(diǎn),請(qǐng)?zhí)剿鳎菏欠翊嬖谶@樣的點(diǎn)P,使以點(diǎn)P為圓心的圓經(jīng)過(guò)A、B兩點(diǎn),并且與直線CD相切?如果存在,請(qǐng)求出點(diǎn)P的坐標(biāo);如果不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1)已知函數(shù)的圖象與反比例函數(shù)的圖象的一個(gè)交點(diǎn)為A,則= ________.
(2)如果滿足,試求代數(shù)式的值.
(3)已知,,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,OA⊥OC,OB⊥OD,①∠AOB=∠COD;②∠BOC+∠AOD=180°;③∠AOB+∠COD=90°;④圖中小于平角的角有6個(gè);其中正確的結(jié)論有幾個(gè)( 。
A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示的運(yùn)算程序中,若開(kāi)始輸入的x值為48,我們發(fā)現(xiàn)第一次輸出的結(jié)果為24,第二次輸出輸出的結(jié)果為12,…則第2014次輸出的結(jié)果為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】A、B兩城相距600千米,一輛客車從A城開(kāi)往B城,車速為每小時(shí)80千米,同時(shí)一輛出租車從B城開(kāi)往A城,車速為毎小時(shí)100千米,設(shè)客車出時(shí)間為t.
(1)【探究】 若客車、出租車距B城的距離分別為y1、y2 , 寫(xiě)出y1、y2關(guān)于t的函數(shù)關(guān)系式,并計(jì)算當(dāng)y1=200千米時(shí)y2的値.
(2)【發(fā)現(xiàn)】 設(shè)點(diǎn)C是A城與B城的中點(diǎn),
(Ⅰ)哪個(gè)車會(huì)先到達(dá)C?該車到達(dá)C后再經(jīng)過(guò)多少小時(shí),另一個(gè)車會(huì)到達(dá)C?
(Ⅱ)若兩車扣相距100千米時(shí),求時(shí)間t.
(3)【決策】 己知客車和出租車正好在A,B之間的服務(wù)站D處相遇,此時(shí)出租車乘客小王突然接到開(kāi)會(huì)通知,需要立即返回,此時(shí)小王有兩種選擇返回B城的方案:
方案一:繼續(xù)乘坐出租車,到達(dá)A城后立刻返回B城(設(shè)出租車調(diào)頭時(shí)間忽略不計(jì));
方案二:乘坐客車返回城.
試通過(guò)計(jì)算,分析小王選擇哪種方式能更快到達(dá)B城?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知點(diǎn)P是∠AOB角平分線上的一點(diǎn),∠AOB=60°,PD⊥OA,M是OP的中點(diǎn),DM=4cm,如果點(diǎn)C是OB上一個(gè)動(dòng)點(diǎn),則PC的最小值為( )
A.2
B.2
C.4
D.4
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB為⊙O的直徑,點(diǎn)C為AB延長(zhǎng)線上一點(diǎn),動(dòng)點(diǎn)P從點(diǎn)A出發(fā)沿AC方向以lcm/s的速度運(yùn)動(dòng),同時(shí)動(dòng)點(diǎn)Q從點(diǎn)C出發(fā)以相同的速度沿CA方向運(yùn)動(dòng),當(dāng)兩點(diǎn)相遇時(shí)停止運(yùn)動(dòng),過(guò)點(diǎn)P作AB的垂線,分別交⊙O于點(diǎn)M和點(diǎn)N,已知⊙O的半徑為l,設(shè)運(yùn)動(dòng)時(shí)間為t秒.
(1)若AC=5,則當(dāng)t=時(shí),四邊形AMQN為菱形;當(dāng)t=時(shí),NQ與⊙O相切;
(2)當(dāng)AC的長(zhǎng)為多少時(shí),存在t的值,使四邊形AMQN為正方形?請(qǐng)說(shuō)明理由,并求出此時(shí)t的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)O是直線AB上的一點(diǎn),將一直角三角板如圖擺放,過(guò)點(diǎn)O作射線OE平分∠BOC.
(1)如圖1,如果∠AOC=40°,依題意補(bǔ)全圖形,寫(xiě)出求∠DOE度數(shù)的思路(不必寫(xiě)出完整的推理過(guò)程);
(2)當(dāng)直角三角板繞點(diǎn)O順時(shí)針旋轉(zhuǎn)一定的角度得到圖2,使得直角邊OC在直線AB的上方,若∠AOC=α,其他條件不變,請(qǐng)你直接用含α的代數(shù)式表示∠DOE的度數(shù);
(3)當(dāng)直角三角板繞點(diǎn)O繼續(xù)順時(shí)針旋轉(zhuǎn)一周,回到圖1的位置,在旋轉(zhuǎn)過(guò)程中你發(fā)現(xiàn)∠AOC與∠DOE(0°≤∠AOC≤180°,0°≤∠DOE≤180°)之間有怎樣的數(shù)量關(guān)系?請(qǐng)直接寫(xiě)出你的發(fā)現(xiàn).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com