(2004•太原)已知:如圖△ABC中,高AD和BE相交于點(diǎn)H,且HA=HC.
(1)求證:∠1=∠2;
(2)用直尺和圓規(guī)畫(huà)出經(jīng)過(guò)B、H、C三點(diǎn)的⊙O(不寫(xiě)畫(huà)法);
(3)證明EC是⊙O的切線.

【答案】分析:(1)根據(jù)題意HA=HC,由等腰三角形的性質(zhì)可得∠1=∠3,圓內(nèi)接四邊形的性質(zhì)可得∠3=∠2;聯(lián)立可得∠1=∠2;
(2)根據(jù)三角形外接圓的作法可得答案;
(3)連接CO并延長(zhǎng)交⊙O于F,連接FH,根據(jù)角的關(guān)系,易得∠1+∠FCH=90°,即EC⊥FC,故可得EC是⊙的切線.
解答:(1)證明:在△AHC中;
∵HA=HC,
∴∠1=∠2(1分),
∵AD⊥BC,BE⊥AC,∠AHE=∠BHD,
∴∠3=∠2(1分),
∴∠1=∠2;(1分)

(2)畫(huà)圖正確;(2分)

(3)證明:連接CO并延長(zhǎng)交⊙O于F,連接FH,則∠F+∠FCH=90°;
由(1)知∠1=∠2,
∵∠F=∠2,
∴∠F=∠1,
∴∠1+∠FCH=90°,
∴EC⊥FC,
∴EC是⊙的切線.
點(diǎn)評(píng):本題考查切線的判定,角相等的證明及三角形外接圓的作法,要求學(xué)生掌握常見(jiàn)的解題方法,并能結(jié)合圖形選擇簡(jiǎn)單的方法解題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:2004年全國(guó)中考數(shù)學(xué)試題匯編《圖形的對(duì)稱》(03)(解析版) 題型:填空題

(2004•太原)已知:如圖,Rt△ABC中,∠C=90°,沿過(guò)點(diǎn)B的一條直線BE折疊△ABC,使點(diǎn)C恰好落在AB邊的中點(diǎn)D處,則∠A=    度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2004年全國(guó)中考數(shù)學(xué)試題匯編《圓》(12)(解析版) 題型:解答題

(2004•太原)已知:如圖△ABC中,高AD和BE相交于點(diǎn)H,且HA=HC.
(1)求證:∠1=∠2;
(2)用直尺和圓規(guī)畫(huà)出經(jīng)過(guò)B、H、C三點(diǎn)的⊙O(不寫(xiě)畫(huà)法);
(3)證明EC是⊙O的切線.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2004年全國(guó)中考數(shù)學(xué)試題匯編《整式》(03)(解析版) 題型:解答題

(2004•太原)已知實(shí)數(shù)a、b滿足(a+b)2=1,(a-b)2=25,求a2+b2+ab的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2009年海南省?谑信f州中學(xué)中考數(shù)學(xué)模擬試卷(解析版) 題型:填空題

(2004•太原)已知:如圖,Rt△ABC中,∠C=90°,沿過(guò)點(diǎn)B的一條直線BE折疊△ABC,使點(diǎn)C恰好落在AB邊的中點(diǎn)D處,則∠A=    度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2004年山西省太原市中考數(shù)學(xué)試卷(解析版) 題型:填空題

(2004•太原)已知:矩形OABC在平面直角坐標(biāo)系中的位置如圖所示,點(diǎn)B的坐標(biāo)為(3,-2),則矩形的面積等于   

查看答案和解析>>

同步練習(xí)冊(cè)答案