如圖所示,直角梯形OABC的頂點(diǎn)A、C分別在y軸正半軸與x軸負(fù)半軸上.精英家教網(wǎng)過(guò)點(diǎn)B、C作直線l.將直線l平移,平移后的直線l與x軸交于點(diǎn)D,與y軸交于點(diǎn)E.且AB=2,BC=2
5
,OA=4
(1)求直角梯形OABC的面積及直線BC的解析式;
(2)當(dāng)直線l向左或向右平移時(shí)(包括l與直線BC重合),在直線AB上是否存在點(diǎn)P,使△PDE為等腰直角三角形?若存在,請(qǐng)直接寫(xiě)出所有滿足條件的點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
分析:(1)先過(guò)B作BF⊥x軸交x軸于F,會(huì)得到,OF=AB=2,及直角三角形BFC,能求得CF,OC=CF+OF,從而求出直角梯形OABC的面積,這樣得出B、C兩點(diǎn)的坐標(biāo).由點(diǎn)斜式y(tǒng)=kx+b,把B、C點(diǎn)的坐標(biāo)代入求出k和b即能求出直線BC的解析式.
(2)當(dāng)直線l向左或向右平移時(shí)(包括l與直線BC重合),在直線AB上是否存在點(diǎn)P,使△PDE為等腰直角三角形的點(diǎn)可以確定縱坐標(biāo)都為4,有兩相等的直角邊確定橫坐標(biāo).
解答:解:(1)過(guò)B作BF⊥x軸于F,得,OF=AB=2,BF=OA=4且得直角三角形BFC,
所以根據(jù)勾股定理得:CF2=BC2-BF2=(2
5
)
2
-42=4,
∴CF=2,OC=CF+OF=2+2=4,
所以直角梯形OABC的面積為:(4+2)×4÷2=12.
由已知和計(jì)算得B、C兩點(diǎn)的坐標(biāo)分別為:(-2,4),(-4,0),
設(shè)直線BC的解析式為y=kx+b,則得;
4=-2k+b   ①
0=-4k+b   ②
由①②得k=2,b=8,
所以直線BC的解析式為:y=2x+8.
精英家教網(wǎng)
(2)存在,所有滿足條件的點(diǎn)P的坐標(biāo)分別為:
P1(-12,4),P2(-8,4),P3(-
8
3
,4),P4(4,4),P5(8,4).
點(diǎn)評(píng):此題考查的知識(shí)點(diǎn)是一次函數(shù)的應(yīng)用及直角三角形的性質(zhì)應(yīng)用,其關(guān)鍵是通過(guò)解直角三角形確定點(diǎn)的坐標(biāo)求解.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

3、如圖所示.直角梯形ABCD中,AD∥BC,∠A=90°,∠ADC=135°,CD的垂直平分線交BC于N,交AB延長(zhǎng)線于F,垂足為M.求證:AD=BF.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•江寧區(qū)一模)在一張直角三角形紙片的兩直角邊上各取一點(diǎn),分別沿斜邊中點(diǎn)與這兩點(diǎn)的連線剪去兩個(gè)三角形,剩下的部分是如圖所示的直角梯形,其中三邊長(zhǎng)分別為2、4、3,則原直角三角形紙片的面積是
16或24
16或24

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•宜春模擬)小紅在一張直角三角形紙片的兩直角邊上各取一點(diǎn),分別沿斜邊中點(diǎn)與這兩點(diǎn)的連線剪去兩個(gè)三角形,剩下的部分是如圖所示的直角梯形,其中三邊長(zhǎng)分別為4、8、6,則原直角三角形紙片的斜邊長(zhǎng)是
20或8
5
20或8
5

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

將如圖所示的直角梯形繞直角邊AB旋轉(zhuǎn)一周,所得幾何體的主視圖是( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案