如圖,在平行四邊形ABCD中,點(diǎn)E是邊AD的中點(diǎn),BE的延長(zhǎng)線與CD的延長(zhǎng)線相交于點(diǎn)F.
(1)求證:△ABE≌△DFE;
(2)試連接BD、AF,判斷四邊形ABDF的形狀,并證明你的結(jié)論.

【答案】分析:(1)可用ASA證明△ABE≌△DFE;
(2)四邊形ABDF是平行四邊形,可用對(duì)角線互相平分的四邊形是平行四邊形證明.
解答:(1)證明:∵四邊形ABCD是平行四邊形,
∴AB∥CF.
∴∠1=∠2,∠3=∠4
∵E是AD的中點(diǎn),
∴AE=DE.
∴△ABE≌△DFE.

(2)解:四邊形ABDF是平行四邊形.
∵△ABE≌△DFE,
∴AB=DF
又∵AB∥DF
∴四邊形ABDF是平行四邊形.
點(diǎn)評(píng):此題主要考查平行四邊形的判定和全等三角形的判定.熟練掌握性質(zhì)定理和判定定理是解題的關(guān)鍵.平行四邊形的五種判定方法與平行四邊形的性質(zhì)相呼應(yīng),每種方法都對(duì)應(yīng)著一種性質(zhì),在應(yīng)用時(shí)應(yīng)注意它們的區(qū)別與聯(lián)系.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

17、如圖,在平行四邊形ABCD中,EF∥AD,GH∥AB,EF、GH相交于點(diǎn)O,則圖中共有
9
個(gè)平行四邊形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,在平行四邊形ABCD中,∠ABC的平分線交CD于點(diǎn)E,∠ADC的平分線交AB于點(diǎn)F,證明:四邊形DFBE是平行四邊形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在平行四邊形ABCD中,∠C=60°,BC=6厘米,DC=7厘米.點(diǎn)M是邊AD上一點(diǎn),且DM:AD=1:3.點(diǎn)E、F分別從A、C同時(shí)出發(fā),以1厘米/秒的速度分別沿AB、CB向點(diǎn)B運(yùn)動(dòng)(當(dāng)點(diǎn)F運(yùn)動(dòng)到點(diǎn)B時(shí),點(diǎn)E隨之停止運(yùn)動(dòng)),EM、CD精英家教網(wǎng)的延長(zhǎng)線交于點(diǎn)P,F(xiàn)P交AD于點(diǎn)Q.設(shè)運(yùn)動(dòng)時(shí)間為x秒,線段PC的長(zhǎng)為y厘米.
(1)求y與x之間函數(shù)關(guān)系式,并寫(xiě)出自變量x的取值范圍;
(2)當(dāng)x為何值時(shí),PF⊥AD?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,在平行四邊形ABCD中,AB=2
2
,AO=
3
OB=
5
,則下列結(jié)論中不正確的是( 。
A、AC⊥BD
B、四邊形ABCD是菱形
C、△ABO≌△CBO
D、AC=BD

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•同安區(qū)一模)如圖,在平行四邊形ABCD中,已知∠ODA=90°,AC=10cm,BD=6cm,則AD的長(zhǎng)為
4cm
4cm

查看答案和解析>>

同步練習(xí)冊(cè)答案