如圖,將矩形ABCD沿直線EF折疊,使點(diǎn)C與點(diǎn)A重合,折痕交AD于點(diǎn)E,交BC于點(diǎn)F,連接AF、CE,
(1)求證:四邊形AFCE為菱形;
(2)設(shè)AE=a,ED=b,DC=c.請(qǐng)寫出一個(gè)a、b、c三者之間的數(shù)量關(guān)系式.

【答案】分析:(1)由矩形ABCD與折疊的性質(zhì),易證得△CEF是等腰三角形,即CE=CF,即可證得AF=CF=CE=AE,即可得四邊形AFCE為菱形;
(2)由折疊的性質(zhì),可得CE=AE=a,在Rt△DCE中,利用勾股定理即可求得:a、b、c三者之間的數(shù)量關(guān)系式為:a2=b2+c2
解答:(1)證明:∵四邊形ABCD是矩形,
∴AD∥BC,
∴∠AEF=∠EFC,
由折疊的性質(zhì),可得:∠AEF=∠CEF,AE=CE,AF=CF,
∴∠EFC=∠CEF,
∴CF=CE,
∴AF=CF=CE=AE,
∴四邊形AFCE為菱形;

(2)a、b、c三者之間的數(shù)量關(guān)系式為:a2=b2+c2
理由:由折疊的性質(zhì),得:CE=AE,
∵四邊形ABCD是矩形,
∴∠D=90°,
∵AE=a,ED=b,DC=c,
∴CE=AE=a,
在Rt△DCE中,CE2=CD2+DE2,
∴a、b、c三者之間的數(shù)量關(guān)系式為:a2=b2+c2
點(diǎn)評(píng):此題考查了矩形的性質(zhì)、折疊的性質(zhì)、菱形的判定以及勾股定理等知識(shí).此題難度適中,注意掌握數(shù)形結(jié)合思想的應(yīng)用,注意折疊中的對(duì)應(yīng)關(guān)系.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,將矩形ABCD繞點(diǎn)A順時(shí)針旋轉(zhuǎn)90°后,得到矩形AB′C′D′,如果CD=2DA=2,那么CC′=
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

4、如圖,將矩形ABCD折疊,AE是折痕,點(diǎn)D恰好落在BC邊上的點(diǎn)F處,量得∠BAF=50°,那么∠DEA等于(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,將矩形ABCD的BC邊折起,使點(diǎn)B落在DC上的點(diǎn)F處得折痕AE,若∠DFA為40°,則∠EAF的度數(shù)是( 。
A、15°B、20°C、25°D、30°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

12、如圖,將矩形ABCD沿直線EF對(duì)折,點(diǎn)D恰好與BC邊上的點(diǎn)H重合,∠GFP=62°,那么∠EHF的度數(shù)等于
56
°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,將矩形ABCD繞C點(diǎn)順時(shí)針旋轉(zhuǎn)到矩形CEFG,點(diǎn)E在CD上,若AB=8,BC=6,則旋轉(zhuǎn)過程中點(diǎn)A所經(jīng)過的路徑長(zhǎng)為
.(結(jié)果不取近似值).

查看答案和解析>>

同步練習(xí)冊(cè)答案