已知拋物線y=ax2-x-c過點A(-6,0),與y軸交于點B,頂點為D,對稱軸是直線x=-2.
(1)求此拋物線的表達(dá)式及點D的坐標(biāo);
(2)連接DO,求證:∠AOD=∠ABO;
(3)點P在y軸上,且△ADP與△AOB相似,求點P的坐標(biāo).

【答案】分析:(1)將對稱軸是直線x=-2,以及點A(-6,0),代入解析式求出即可;
(2)過D作DH⊥x軸,利用D(-2,4),得出在Rt△DHO中tan∠AOD=2,進(jìn)而得出∠AOD=∠ABO;
(3)分別根據(jù)情況1:若∠DAP=90°,情況2:若∠ADP=90°,情況3:若∠APD=90°,分析得出P點坐標(biāo)即可.
解答:解:(1)由題意得
解得,
∴拋物線的表達(dá)式為y=-x2-x+3,
頂點D坐標(biāo)為(-2,4);

(2)過D作DH⊥x軸,
∵D(-2,4),
∴在Rt△DHO中tan∠AOD=2,
又∵B(0,3),A(-6,0),
∴在Rt△ABO中tan∠ABO=2,
∴∠AOD=∠ABO;
             
(3)∵△ADP與△AOB相似,而△AOB為直角三角形,
∴△ADP也為直角三角形,
∴情況1:若∠DAP=90°,
∵D(-2,4),A(-6,0),
∴∠DAO=45°,∴∠OAP=45°,
∴P(0,-6)
但此時AD=4,AP=6,
=,又=
∴△ADP與△AOB不相似,
∴此時點P不存在.           
情況2:若∠ADP=90°,
∵D(-2,4),A(-6,0),
∴∠ADH=45°,∴∠HDP=45°,
∴P(0,2)
此時,===,且∠ADP=∠AOB,
∴△ADP與△AOB相似,
即當(dāng)P(0,2)時,使得△ADP與△AOB相似.
情況3:若∠APD=90°,設(shè)P(0,t),
則AP2+PD2=AD2,
即36+t2+4+(t-4)2=32,得t2-4t+12=0,
∵△<0,
∴無解,
∴點P不存在.
綜上所述,點P的坐標(biāo)是(0,2).
點評:此題主要考查了待定系數(shù)法求二次函數(shù)解析式以及相似三角形的性質(zhì)與判定,以及分類討論思想的應(yīng)用,根據(jù)△ADP不同角為90度分別得出是解題關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知拋物線y=ax2+bx+c(a≠0)經(jīng)過A(-2,0),B(0,-4),C(2,-4)三點,且精英家教網(wǎng)與x軸的另一個交點為E.
(1)求拋物線的解析式;
(2)用配方法求拋物線的頂點D的坐標(biāo)和對稱軸;
(3)求四邊形ABDE的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知拋物線y=ax2和直線y=kx的交點是P(-1,2),則a=
 
,k=
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

2、已知拋物線y=ax2+bx+c的開口向下,頂點坐標(biāo)為(2,-3),那么該拋物線有( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知拋物線y=ax2+bx+c(其中b>0,c<0)的頂點P在x軸上,與y軸交于點Q,過坐標(biāo)原點O,作OA⊥PQ,垂足為A,且OA=
2
,b+ac=3.
(1)求b的值;
(2)求拋物線的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•廣州)已知拋物線y1=ax2+bx+c(a≠0,a≠c)過點A(1,0),頂點為B,且拋物線不經(jīng)過第三象限.
(1)使用a、c表示b;
(2)判斷點B所在象限,并說明理由;
(3)若直線y2=2x+m經(jīng)過點B,且于該拋物線交于另一點C(
ca
,b+8
),求當(dāng)x≥1時y1的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案