如圖,△ABC中,AB=AC,D是BC的中點,過A點的直線EF∥BC,且AE=AF,求證:DE=DF.

證明:如圖,連接AD.
∵△ABC中,AB=AC,D是BC的中點,
∴AD⊥BC,
∵EF∥BC,
∴AD⊥EF,
又AE=AF,
∴AD垂直平分EF,
∴DE=DF.
分析:連接AD,先根據(jù)等腰三角形三線合一的性質(zhì)得出AD⊥BC,再結(jié)合已知條件EF∥BC,得到AD⊥EF,又AE=AF,即AD垂直平分EF,然后根據(jù)線段垂直平分線的性質(zhì)即可證明DE=DF.
點評:本題主要考查了等腰三角形的性質(zhì),線段垂直平分線的性質(zhì),難度適中.準(zhǔn)確作出輔助線是解題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

26、已知:如圖,△ABC中,點D在AC的延長線上,CE是∠DCB的角平分線,且CE∥AB.
求證:∠A=∠B.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

27、已知:如圖,△ABC中,∠BAC=60°,D、E兩點在直線BC上,連接AD、AE.
求:∠1+∠2+∠3+∠4.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

27、如圖,△ABC中,AD⊥BC于D,DN⊥AC于N,DM⊥AB于M
求證:∠ANM=∠B.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

14、如圖,△ABC中,∠BAC=120°,AD⊥BC于D,且AB+BD=DC,則∠C的大小是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知,如圖,△ABC中,點D在BC上,且∠1=∠C,∠2=2∠3,∠BAC=70°.
(1)求∠2的度數(shù);
(2)若畫∠DAC的平分線AE交BC于點E,則AE與BC有什么位置關(guān)系,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案