如圖,在平面直角坐標(biāo)系中,拋物線=-++經(jīng)過A(0,-4)、B,0)、 C,0)三點(diǎn),且-=5.

(1)求、的值;(4分)

(2)在拋物線上求一點(diǎn)D,使得四邊形BDCE是以BC為對(duì)     角線的菱形;(3分)

(3)在拋物線上是否存在一點(diǎn)P,使得四邊形BPOH是以OB為對(duì)角線的菱形?若存在,求出點(diǎn)P的坐標(biāo),并判斷這個(gè)菱形是否為正方形?若不存在,請(qǐng)說明理由.(3分)

解:(1)解法一:

∵拋物線=-++經(jīng)過點(diǎn)A(0,-4),

  ∴=-4 ……1分

又由題意可知,、是方程-++=0的兩個(gè)根,

+=,  =-=6··································································· 2分

由已知得(-=25

又(-=(+-4=-24

-24=25                                   

解得 ··········································································································· 3分

當(dāng)=時(shí),拋物線與軸的交點(diǎn)在軸的正半軸上,不合題意,舍去.

=-. ·········································································································· 4分

解法二:∵、是方程-++c=0的兩個(gè)根,

 即方程2-3+12=0的兩個(gè)根.

=,··········································································· 2分

==5,

        解得 ······························································································· 3分

        (以下與解法一相同.)   

    (2)∵四邊形BDCE是以BC為對(duì)角線的菱形,根據(jù)菱形的性質(zhì),點(diǎn)D必在拋物線的對(duì)稱軸上,     5分

          又∵=--4=-++   ································· 6分

            ∴拋物線的頂點(diǎn)(-,)即為所求的點(diǎn)D.······································· 7分

     (3)∵四邊形BPOH是以OB為對(duì)角線的菱形,點(diǎn)B的坐標(biāo)為(-6,0),

根據(jù)菱形的性質(zhì),點(diǎn)P必是直線=-3與

拋物線=---4的交點(diǎn), ···························································· 8分

        ∴當(dāng)=-3時(shí),=-×(-3)×(-3)-4=4,

        ∴在拋物線上存在一點(diǎn)P(-3,4),使得四邊形BPOH為菱形. ·················· 9分

          四邊形BPOH不能成為正方形,因?yàn)槿绻倪呅?i>BPOH為正方形,點(diǎn)P的坐標(biāo)只能是(-3,3),但這一點(diǎn)不在拋物線上.······································································································· 10分

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在平面直角坐標(biāo)中,四邊形OABC是等腰梯形,CB∥OA,OA=7,AB=4,∠COA=60°,點(diǎn)P為x軸上的一個(gè)動(dòng)點(diǎn),但是點(diǎn)P不與點(diǎn)0、點(diǎn)A重合.連接CP,D點(diǎn)是線段AB上一點(diǎn),連接PD.
(1)求點(diǎn)B的坐標(biāo);
(2)當(dāng)∠CPD=∠OAB,且
BD
AB
=
5
8
,求這時(shí)點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•渝北區(qū)一模)如圖,在平面直角坐標(biāo)xoy中,以坐標(biāo)原點(diǎn)O為圓心,3為半徑畫圓,從此圓內(nèi)(包括邊界)的所有整數(shù)點(diǎn)(橫、縱坐標(biāo)均為整數(shù))中任意選取一個(gè)點(diǎn),其橫、縱坐標(biāo)之和為0的概率是
5
29
5
29

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在平面直角坐標(biāo)中,等腰梯形ABCD的下底在x軸上,且B點(diǎn)坐標(biāo)為(4,0),D點(diǎn)坐標(biāo)為(0,3),則AC長(zhǎng)為
5
5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在平面直角坐標(biāo)xOy中,已知點(diǎn)A(-5,0),P是反比例函數(shù)y=
k
x
圖象上一點(diǎn),PA=OA,S△PAO=10,則反比例函數(shù)y=
k
x
的解析式為(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在平面直角坐標(biāo)中,四邊形OABC是等腰梯形,CB∥OA,OC=AB=4,BC=6,∠COA=45°,動(dòng)點(diǎn)P從點(diǎn)O出發(fā),在梯形OABC的邊上運(yùn)動(dòng),路徑為O→A→B→C,到達(dá)點(diǎn)C時(shí)停止.作直線CP.
(1)求梯形OABC的面積;
(2)當(dāng)直線CP把梯形OABC的面積分成相等的兩部分時(shí),求直線CP的解析式;
(3)當(dāng)△OCP是等腰三角形時(shí),請(qǐng)寫出點(diǎn)P的坐標(biāo)(不要求過程,只需寫出結(jié)果).

查看答案和解析>>

同步練習(xí)冊(cè)答案