【題目】如圖,在Rt△ABC中,∠C=90°,AC=4cm,BC=3cm.動(dòng)點(diǎn)M,N從點(diǎn)C同時(shí)出發(fā),均以每秒1cm的速度分別沿CA、CB向終點(diǎn)A,B移動(dòng),同時(shí)動(dòng)點(diǎn)P從點(diǎn)B出發(fā),以每秒2cm的速度沿BA向終點(diǎn)A移動(dòng),連接PM,PN,設(shè)移動(dòng)時(shí)間為t(單位:秒,0<t<2.5).
(1)當(dāng)t為何值時(shí),以A,P,M為頂點(diǎn)的三角形與△ABC相似?
(2)是否存在某一時(shí)刻t,使四邊形APNC的面積S有最小值?若存在,求S的最小值;若不存在,請(qǐng)說(shuō)明理由.
【答案】解:∵如圖,在Rt△ABC中,∠C=90°,AC=4cm,BC=3cm.
∴根據(jù)勾股定理,得AB=。
(1)以A,P,M為頂點(diǎn)的三角形與△ABC相似,分兩種情況:
①當(dāng)△AMP∽△ABC時(shí),,即,解得;
②當(dāng)△APM∽△ABC時(shí),,即,解得t=0(不合題意,舍去)。
綜上所述,當(dāng)時(shí),以A、P、M為頂點(diǎn)的三角形與△ABC相似。
(2)存在某一時(shí)刻t,使四邊形APNC的面積S有最小值.理由如下:
假設(shè)存在某一時(shí)刻t,使四邊形APNC的面積S有最小值。
如圖,過(guò)點(diǎn)P作PH⊥BC于點(diǎn)H.則PH∥AC,
∴,即。∴。
∴。
∵>0,∴S有最小值。
當(dāng)t= 時(shí),S最小值=.
答:當(dāng)t=時(shí),四邊形APNC的面積S有最小值,其最小值是。
【解析】
試題根據(jù)勾股定理求得AB=5cm。
(1)分△AMP∽△ABC和△APM∽△ABC兩種情況討論:利用相似三角形的對(duì)應(yīng)邊成比例來(lái)求t的值。
(2)如圖,過(guò)點(diǎn)P作PH⊥BC于點(diǎn)H,構(gòu)造平行線(xiàn)PH∥AC,由平行線(xiàn)分線(xiàn)段成比例求得以t表示的PH的值;然后根據(jù)“S=S△ABC﹣S△BPH”列出S與t的關(guān)系式,則由二次函數(shù)最值的求法即可得到S的最小值。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在中,按以下步驟作圖:
第一步:分別以點(diǎn)為圓心,以大于的長(zhǎng)為半徑畫(huà)弧,兩弧相交于兩點(diǎn);
第二步:作直線(xiàn)交于點(diǎn),連接.
(1)是______三角形;(填“等邊”、“直角”、“等腰”)
(2)若,則的度數(shù)為___________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下圖顯示了用計(jì)算機(jī)模擬隨機(jī)拋擲一枚硬幣的某次實(shí)驗(yàn)的結(jié)果
下面有三個(gè)推斷:
①當(dāng)拋擲次數(shù)是100時(shí),計(jì)算機(jī)記錄“正面向上”的次數(shù)是47,所以“正面向上”的概率是0.47;
②隨著試驗(yàn)次數(shù)的增加,“正面向上”的頻率總在0.5附近擺動(dòng),顯示出一定的穩(wěn)定性,可以估計(jì)“正面向上”的概率是0.5;
③若再次用計(jì)算機(jī)模擬此實(shí)驗(yàn),則當(dāng)拋擲次數(shù)為150時(shí),“正面向上”的頻率一定是0.45.
其中合理的是
A. ① B. ② C. ①② D. ①③
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】判斷題,正確的打“√”,錯(cuò)誤的打“×”.
(1),得(______). (2)由,得(______).
(3)2是不等式的解(______). (4)由,得(______).
(5)如果,,則(______). (6)如果,則(______).
(7)(______)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】一列快車(chē)從甲地駛往乙地,一列慢車(chē)從乙地駛往甲地,兩車(chē)同時(shí)出發(fā),設(shè)慢車(chē)行駛的時(shí)間為(h),兩車(chē)之間的距離為(km),圖中的折線(xiàn)表示與之間的函數(shù)關(guān)系.根據(jù)圖象進(jìn)行以下探究:
(1)甲、乙兩地之間的距離為 km;
(2)請(qǐng)解釋圖中B點(diǎn)的實(shí)際意義: ;
(3)求慢車(chē)和快車(chē)的速度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在菱形ABCD中,AE⊥BC,AF⊥CD, 且E,F(xiàn)分別為BC,CD的中點(diǎn),求∠EAF .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,A,P,B,C是半徑為8的⊙O上的四點(diǎn),且滿(mǎn)足∠BAC=∠APC=60°,
(1)求證:△ABC是等邊三角形;
(2)求圓心O到BC的距離OD.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】一次函數(shù)y=ax+b與二次函數(shù)y=ax2+bx+c在同一坐標(biāo)系中的圖象可能是( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】先閱讀下列材料,再解答下列問(wèn)題:
題:分解因式:
解:將“”看成整體,設(shè),則原式=
再將“”還原,得原式=.
上述解題用到的是“整體思想”,“整體思想”是數(shù)學(xué)解題中常用的一種思想方法,請(qǐng)你仿照上面的方法解答下列問(wèn)題:
(1)因式分解: ; .
(2)因式分解: ; .
(3)求證:若為正整數(shù),則式子的值一定是某一個(gè)正整數(shù)的平方.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com