(2013•宜興市一模)如圖1,BA⊥MN,垂足為A,BA=4,點(diǎn)P是射線AN上的一個(gè)動(dòng)點(diǎn)(點(diǎn)P與點(diǎn)A不重合),∠BPC=∠BPA,BC⊥BP,過點(diǎn)C作CD⊥MN,垂足為D,設(shè)AP=x.
(1)CD的長(zhǎng)度是否隨著x的變化而變化?若變化,請(qǐng)用含x的代數(shù)式表示CD的長(zhǎng)度;若不變化,請(qǐng)求出線段CD的長(zhǎng)度.
(2)△PBC的面積是否存在最小值?若存在,請(qǐng)求出這個(gè)最小值,并求出此時(shí)的x的值;若不存在,請(qǐng)說明理由.
(3)當(dāng)x取何值時(shí),△ABP和△CDP相似.  
(4)如圖2,當(dāng)以C為圓心,以CP為半徑的圓與線段AB有公共點(diǎn)時(shí),求x的值.
分析:(1)如圖1,延長(zhǎng)CB和PA,記交點(diǎn)為點(diǎn)Q.根據(jù)等腰△QPC“三合一”的性質(zhì)證得QB=BC;由相似三角形(△QAB∽△QDC)的對(duì)應(yīng)邊成比例得到
AB
CD
=
QB
QC
=
1
2
,則CD=2AB;
(2)如圖2,過點(diǎn)B作BF⊥PC,垂足為F.證BF=BA=4.因?yàn)镃P≥CD,所以CP最小值為8,得出△PBC面積的最小值,此時(shí)△BAP是等腰直角三角形,AP=AB=4,進(jìn)而得出答案;
(3)當(dāng)△BAP∽△CDP時(shí),易得∠BPA=60°,x=AP=
BA
tan60°
=
4
3
3
,當(dāng)△BAP∽△PDC時(shí),易得∠BPA=30°,AP=
BA
tan300
=4
3
,求出x的值即可;
(4)根據(jù)當(dāng)點(diǎn)A在⊙C上時(shí),由(1)及垂徑定理得:AE=AD=DP=
1
2
x
,進(jìn)而得出x的取值范圍.
解答:解:(1)CD的長(zhǎng)度不變化.
理由如下:
如圖1,延長(zhǎng)CB和PA,記交點(diǎn)為點(diǎn)Q.
∵∠BPC=∠BPA,BC⊥BP,
∴QB=BC(等腰三角形“三合一”的性質(zhì)).
∵BA⊥MN,CD⊥MN,
∴AB∥CD,
∴△QAB∽△QDC,
AB
CD
=
QB
QC
=
1
2

∴CD=2AB=2×4=8,
即CD=8

(2)如圖2,過點(diǎn)B作BF⊥PC,垂足為F.
∵∠BPC=∠BPA,BA⊥MN,
∴BF=BA=4.
∵CP≥CD,∴CP≥8,即CP最小值為8,
∴△PBC面積的最小值=
1
2
×8×4
=16,
此時(shí)△BAP是等腰三角形,AP=AB=4,即x=4;

(3)當(dāng)△BAP∽△CDP時(shí),
∵∠BPC=∠BPA,∠CPD=∠BPA,
∴∠BPA=∠BPC=∠CPD=60°,
∴AP=
BA
tan60°
=
4
3
3
,
即x=
4
3
3
,
如圖3,當(dāng)△BAP∽△PDC時(shí),
∵∠CPB=∠BPA,∠PCD=∠BPA,
∴3∠BPA=90°,
∴∠BPA=30°,
∴AP=
BA
tan300
=4
3

即x=4
3
,
所以當(dāng)x=
4
3
3
4
3
時(shí),△ABP和△CDP相似;

(4)如圖4,延長(zhǎng)CB和PA相交于點(diǎn)E,
當(dāng)點(diǎn)A在⊙C上時(shí),由(1)及垂徑定理得:
AE=AD=DP=
1
2
x

由△ABE∽△APB得,AB2=AE•AP,
所以  
1
2
x
2=16,即x=4
2
,
所以x的取值范圍是0<x≤4
2
點(diǎn)評(píng):此題主要考查了圓的綜合應(yīng)用以及相似三角形的判定與性質(zhì)和銳角三角函數(shù)關(guān)系等知識(shí),熟練利用相似三角形的性質(zhì)得出線段之間的關(guān)系是解題關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2013•宜興市一模)由于受到手機(jī)更新?lián)Q代的影響,某手機(jī)店經(jīng)銷的甲型號(hào)手機(jī)二月份售價(jià)比一月份售價(jià)每臺(tái)降價(jià)500元.如果賣出相同數(shù)量的手機(jī),那么一月份銷售額為9萬元,二月份銷售額只有8萬元.
(1)求二月份甲型號(hào)手機(jī)每臺(tái)售價(jià)為多少元?
(2)為了提高利潤(rùn),該店計(jì)劃三月份加入乙型號(hào)手機(jī)銷售,已知甲型每臺(tái)進(jìn)價(jià)為3500元,乙型每臺(tái)進(jìn)價(jià)為4000元,預(yù)計(jì)用不多于7.6萬元且不少于7.5萬元的資金購進(jìn)這兩種手機(jī)共20臺(tái),請(qǐng)問有幾種進(jìn)貨方案?
(3)對(duì)于(2)中剛進(jìn)貨的20臺(tái)兩種型號(hào)的手機(jī),該店計(jì)劃對(duì)甲型號(hào)手機(jī)在二月份售價(jià)基礎(chǔ)上每售出一臺(tái)甲型手機(jī)再返還顧客現(xiàn)金a元,乙型手機(jī)按銷售價(jià)4400元銷售,若要使(2)中所有方案獲利相同,a應(yīng)取何值?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•宜興市一模)如圖,AB是⊙O的直徑,C、D是⊙O上的點(diǎn),∠CDB=20°,過點(diǎn)C作⊙O的切線交AB的延長(zhǎng)線于點(diǎn)E,則∠E=
50°
50°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•宜興市一模)如圖,在△ABC中,AC=BC>AB,點(diǎn)P為△ABC所在平面內(nèi)一點(diǎn),且點(diǎn)P與△ABC的任意兩個(gè)頂點(diǎn)構(gòu)成△PAB,△PBC,△PAC均是等腰三角形,則滿足上述條件的所有點(diǎn)P的個(gè)數(shù)為
6
6
個(gè).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•宜興市一模)如圖,已知△ABC在平面直角坐標(biāo)系中,其中點(diǎn)A、B、C三點(diǎn)的坐標(biāo)分別為(1,2
3
),(-1,0),(3,0),點(diǎn)D為BC中點(diǎn),P是AC上的一個(gè)動(dòng)點(diǎn)(P與點(diǎn)A、C不重合),連接PB、PD,則△PBD周長(zhǎng)的最小值是(  )

查看答案和解析>>

同步練習(xí)冊(cè)答案