(2005•黑龍江)為了了解業(yè)余射擊隊隊員的射擊成績,對某次射擊比賽中每一名隊員的平均成績(單位:環(huán),環(huán)數(shù)為整數(shù))進行了統(tǒng)計,分別繪制了如下統(tǒng)計表和頻率分布直方圖,請你根據(jù)統(tǒng)計表和頻率分布直方圖回答下列問題:
平均成績  5 610 
 人數(shù) 0  3  4 
(1)參加這次射擊比賽的隊員有多少名?
(2)這次射擊比賽平均成績的中位數(shù)落在頻率分布直方圖的哪個小組內(nèi)?
(3)這次射擊比賽平均成績的眾數(shù)落在頻率分布直方圖的哪個小組內(nèi)?

【答案】分析:(1)把各頻數(shù)相加即可;
(2)33個數(shù),中位數(shù)應是大小排序后的第17個數(shù);
(3)6.5~8.5的頻數(shù)最多為15.
解答:解:(1)參加這次射擊比賽的隊員有:4+6+7+15+1=33(人);

(2)33個數(shù),中位數(shù)應是大小排序后的第17個數(shù),落在4.5~6.5這個小組內(nèi);

(3)0.5~2.5有4個數(shù),則平均數(shù)為2的人數(shù)為3;6.5~8.5有15個數(shù),則平均數(shù)為7的人數(shù)為15-6=9人;平均數(shù)為5的人數(shù)為7-4=3;所以眾數(shù)為7,落在6.5~8.5小組內(nèi).
點評:本題用到的知識點是:給定一組數(shù)據(jù),出現(xiàn)次數(shù)最多的那個數(shù),稱為這組數(shù)據(jù)的眾數(shù).中位數(shù)的定義:將一組數(shù)據(jù)從小到大依次排列,把中間數(shù)據(jù)(或中間兩數(shù)據(jù)的平均數(shù))叫做中位數(shù).各頻數(shù)相加即為總數(shù).
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源:2005年全國中考數(shù)學試題匯編《一次函數(shù)》(05)(解析版) 題型:解答題

(2005•黑龍江)如圖所示,在平面直角坐標系中,Rt△ABC的斜邊AB在x軸上,AB=25,頂點C在y軸的負半軸上,tan∠ACO=,點P在線段OC上,且PO、PC的長(PO<PC)是關(guān)于x的方程x2-(2k+4)x+8k=0的兩根.
(1)求AC、BC的值;
(2)求P點坐標;
(3)在x軸上是否存在點Q,使以點A、C、P、Q為頂點的四邊形是梯形?若存在,請直接寫出直線PQ的解析式;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:2005年全國中考數(shù)學試題匯編《一次函數(shù)》(05)(解析版) 題型:解答題

(2005•黑龍江)如圖,在平面直角坐標系中,Rt△ABC的斜邊AB在x軸上,頂點C在y軸的負半軸上,tan∠ABC=,點P在線段OC上,且PO、PC的長(PO<PC)是方程x2-12x+27=0的兩根.
(1)求P點坐標;
(2)求AP的長;
(3)在x軸上是否存在點Q,使以點A、C、P、Q為頂點的四邊形是梯形?若存在,請直接寫出直線PQ的解析式;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:2010年中考數(shù)學考前10日信息題復習題精選(1)(解析版) 題型:解答題

(2005•黑龍江)如圖,在平面直角坐標系中,Rt△ABC的斜邊AB在x軸上,頂點C在y軸的負半軸上,tan∠ABC=,點P在線段OC上,且PO、PC的長(PO<PC)是方程x2-12x+27=0的兩根.
(1)求P點坐標;
(2)求AP的長;
(3)在x軸上是否存在點Q,使以點A、C、P、Q為頂點的四邊形是梯形?若存在,請直接寫出直線PQ的解析式;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:2005年黑龍江省中考數(shù)學試卷(課標卷)(解析版) 題型:填空題

(2005•黑龍江)已知拋物線y=ax2+bx+c經(jīng)過點(1,2)與(-1,4),則a+c的值是   

查看答案和解析>>

科目:初中數(shù)學 來源:2005年黑龍江省中考數(shù)學試卷(大綱卷)(解析版) 題型:解答題

(2005•黑龍江)如圖所示,在平面直角坐標系中,Rt△ABC的斜邊AB在x軸上,AB=25,頂點C在y軸的負半軸上,tan∠ACO=,點P在線段OC上,且PO、PC的長(PO<PC)是關(guān)于x的方程x2-(2k+4)x+8k=0的兩根.
(1)求AC、BC的值;
(2)求P點坐標;
(3)在x軸上是否存在點Q,使以點A、C、P、Q為頂點的四邊形是梯形?若存在,請直接寫出直線PQ的解析式;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案