如圖,在平面直角坐標系xOy中,AB在x軸上,AB=10,以AB為直徑的⊙O1與y軸正半軸交于點C,連接BC、AC,CD是⊙O1的切線,AD⊥CD于點D,tan∠CAD=,拋物線y=ax2+bx+c過A、B、C三點.
(1)求證:∠CAD=∠CAB;
(2)求拋物線的解析式;
(3)判斷拋物線的頂點E是否在直線CD上,并說明理由.

【答案】分析:(1)根據(jù)切線的性質(zhì)得出O1C∥AD,進而得出O1A=O1C,則∠CAB=∠O1CA,即可得出答案;
(2)首先得出△CAO∽△BCO,即可得出,再利用OC2=2CO(10-2CO),得出A.B,C交點坐標,即可得出拋物線解析式;
(3)首先求出△AOC≌△ADC即可得出AD=AO=8,利用O1C∥AD,得出△FO1C∽△FAD,即可求出F點坐標,求出CD解析式,再利用E點坐標代入解析式即可得出答案.
解答:(1)證明:連接O1C,
∵CD是⊙O1的切線,
∴O1C⊥CD,
∵AD⊥CD,
∴O1C∥AD,
∴∠O1CA=∠CAD,
∵O1A=O1C,
∴∠CAB=∠O1CA,
∴∠CAD=∠CAB;

(2)解:∵AB是⊙O1的直徑,
∴∠ACB=90°,
∵OC⊥AB,
∴∠CAB=∠OCB,
∴△CAO∽△BCO,

即OC2=OA•OB,
∵tan∠CAO=tan∠CAD=
∴AO=2CO,
又∵AB=10,
∴OC2=2CO(10-2CO),
∵CO>0,
∴CO=4,AO=8,BO=2,
∴A(8,0),B(-2,0),C(0,4),
∵拋物線y=ax2+bx+c過點A,B,C三點,
∴c=4,
由題意得:,
解得:,
∴拋物線的解析式為:;

(3)解:設(shè)直線DC交x軸于點F,
在△AOC和△ADC中,
,
∴△AOC≌△ADC(AAS),
∴AD=AO=8,
∵O1C∥AD,
∴△FO1C∽△FAD,
,
∴8(BF+5)=5(BF+10),
∴BF=,F(xiàn)();
設(shè)直線DC的解析式為y=kx+m,則
,
解得: ,
∴直線DC的解析式為y=x+4,
=得頂點E的坐標為(3,),
將E(3,)代入直線DC的解析式y(tǒng)=x+4中,
右邊=×3+4==左邊,
∴拋物線頂點E在直線CD上.
點評:此題主要考查了二次函數(shù)的綜合應(yīng)用,以及待定系數(shù)法求一次函數(shù)和二次函數(shù)解析式以及相似三角形的判定與性質(zhì)等知識,得出A,B,C點坐標是解題關(guān)鍵.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,在平面直角坐標中,四邊形OABC是等腰梯形,CB∥OA,OA=7,AB=4,∠COA=60°,點P為x軸上的一個動點,但是點P不與點0、點A重合.連接CP,D點是線段AB上一點,連接PD.
(1)求點B的坐標;
(2)當∠CPD=∠OAB,且
BD
AB
=
5
8
,求這時點P的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•渝北區(qū)一模)如圖,在平面直角坐標xoy中,以坐標原點O為圓心,3為半徑畫圓,從此圓內(nèi)(包括邊界)的所有整數(shù)點(橫、縱坐標均為整數(shù))中任意選取一個點,其橫、縱坐標之和為0的概率是
5
29
5
29

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在平面直角坐標中,等腰梯形ABCD的下底在x軸上,且B點坐標為(4,0),D點坐標為(0,3),則AC長為
5
5

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在平面直角坐標xOy中,已知點A(-5,0),P是反比例函數(shù)y=
k
x
圖象上一點,PA=OA,S△PAO=10,則反比例函數(shù)y=
k
x
的解析式為( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在平面直角坐標中,四邊形OABC是等腰梯形,CB∥OA,OC=AB=4,BC=6,∠COA=45°,動點P從點O出發(fā),在梯形OABC的邊上運動,路徑為O→A→B→C,到達點C時停止.作直線CP.
(1)求梯形OABC的面積;
(2)當直線CP把梯形OABC的面積分成相等的兩部分時,求直線CP的解析式;
(3)當△OCP是等腰三角形時,請寫出點P的坐標(不要求過程,只需寫出結(jié)果).

查看答案和解析>>

同步練習冊答案