如圖,已知拋物線與軸交于點,,與軸交于點

(1)求拋物線的解析式及其頂點的坐標(biāo);
(2)設(shè)直線軸于點.在線段的垂直平分線上是否存在點,使得點到直線的距離等于點到原點的距離?如果存在,求出點的坐標(biāo);如果不存在,請說明理由;
(3)過點軸的垂線,交直線于點,將拋物線沿其對稱軸平移,使拋物線與線段總有公共點.試探究:拋物線向上最多可平移多少個單位長度?向下最多可平移多少個單位長度?

(1)
(2)
(3)向上最多可平移72個單位長,向下最多可平移個單位長解析:
(1)設(shè)拋物線解析式為,把代入得
,
頂點 (4分)
(2)假設(shè)滿足條件的點存在,依題意設(shè)
求得直線的解析式為,
它與軸的夾角為,設(shè)的中垂線交,則
,點的距離為
.(2分)

平方并整理得:

存在滿足條件的點,的坐標(biāo)為.   (2分)
(3)由上求得
①若拋物線向上平移,可設(shè)解析式為
當(dāng)時,
當(dāng)時,

. (2分)
②若拋物線向下移,可設(shè)解析式為
,

,
向上最多可平移72個單位長,向下最多可平移個單位長.(2分)
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:


如圖,已知拋物線軸的兩個交點為A、B,與軸交于點C

(1)求A、B、C三點的坐標(biāo)?
(2)用配方法求該二次函數(shù)的對稱軸和頂點坐標(biāo)?
(3)若坐標(biāo)平面內(nèi)的點M,使得以點M和三點A、B、C為頂點的四邊形是平行四邊形,求點M的坐標(biāo)?(直接寫出M的坐標(biāo),不用說明)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2011年陜西省西安音樂學(xué)院初一上學(xué)期期末考試數(shù)學(xué)卷 題型:解答題

如圖,已知拋物線與軸交于點,與y軸交于點

(1)求拋物線的解析式及其頂點D的坐標(biāo);
(2)設(shè)直線CD交軸于點E.在線段OB的垂直平分線上是否存在點P,使得點P到直線CD的距離等于點P到原點O的距離?如果存在,求出點P的坐標(biāo);如果不存在,請說明理由

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2011年陜西省西安音樂學(xué)院初一上學(xué)期期末考試數(shù)學(xué)卷 題型:解答題

如圖,已知拋物線與軸交于點,,與y軸交于點

(1)求拋物線的解析式及其頂點D的坐標(biāo);

(2)設(shè)直線CD交軸于點E.在線段OB的垂直平分線上是否存在點P,使得點P到直線CD的距離等于點P到原點O的距離?如果存在,求出點P的坐標(biāo);如果不存在,請說明理由

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年湖北省黃岡市初二上學(xué)期期末數(shù)學(xué)卷 題型:解答題

 

如圖,已知拋物線軸的兩個交點為A、B,與軸交于點C

(1)求A、B、C三點的坐標(biāo)?

(2)用配方法求該二次函數(shù)的對稱軸和頂點坐標(biāo)?

(3)若坐標(biāo)平面內(nèi)的點M,使得以點M和三點A、B、C為頂點的四邊形是平行四邊形,求點M的坐標(biāo)?(直接寫出M的坐標(biāo),不用說明)

 

查看答案和解析>>

同步練習(xí)冊答案