【題目】如圖,在平面直角坐標系中,一次函數(shù)y=kx+b的圖象經(jīng)過點A(﹣2,6),且與x軸相交于點B,與正比例函數(shù)y=3x的圖象相交于點C,點C的橫坐標為1.

(1)求k、b的值;

(2)若點Dy軸負半軸上,且滿足SCOD=SBOC,求點D的坐標.

【答案】(1)k=-1,b=4;(2)點D的坐標為(0,-4).

【解析】

1)利用一次函數(shù)圖象上點的坐標特征可求出點C的坐標,根據(jù)點A、C的坐標,利用待定系數(shù)法即可求出k、b的值;

(2)利用一次函數(shù)圖象上點的坐標特征可求出點B的坐標,設(shè)點D的坐標為(0,m)(m<0),根據(jù)三角形的面積公式結(jié)合SCOD=SBOC,即可得出關(guān)于m的一元一次方程,解之即可得出m的值,進而可得出點D的坐標.

1)當x=1時,y=3x=3,

∴點C的坐標為(1,3).

A(﹣2,6)、C(1,3)代入y=kx+b,

得:,

解得:

(2)當y=0時,有﹣x+4=0,

解得:x=4,

∴點B的坐標為(4,0).

設(shè)點D的坐標為(0,m)(m<0),

SCOD=SBOC,即﹣m=××4×3,

解得:m=-4,

∴點D的坐標為(0,-4).

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】甲、乙兩同學的家與某科技館的距離均為4000m.甲、乙兩人同時從家出發(fā)去科技館,甲同學先步行800m,然后乘公交車,乙同學騎自行車.已知乙騎自行車的速度是甲步行速度的4倍,公交車的速度是乙騎自行車速度的2倍,結(jié)果甲同學比乙同學晚到2.5min.求乙到達科技館時,甲離科技館還有多遠.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】小明參加某網(wǎng)店的翻牌抽獎活動.如圖,4張牌分別對應(yīng)價值5,10,15,20(單位:元)4件獎品.

(1)如果隨機翻1張牌,求抽中20元獎品的概率;

(2)如果隨機翻兩張牌,且第一次翻過的牌不再參加下次翻牌,求所獲獎品總值不低于30元的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在中,平分邊于點,過點邊于點.且平分,若.

1)求的度數(shù).

2)求的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,二次函數(shù)的圖象與x軸相交于A3,0、B1,0兩點,與y軸相交于點C0,3,點C、D是二次函數(shù)圖象上的一對對稱點,一次函數(shù)的圖象過點B、D

1求D點坐標;

2求二次函數(shù)的解析式;

3根據(jù)圖象直接寫出使一次函數(shù)值小于二次函數(shù)值的x的取值范圍

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,四邊形EFGH是矩形ABCD的內(nèi)接矩形,且EF:FG=3:1,AB:BC=2:1,則tanAHE的值為( .

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】汽車在山區(qū)行駛過程中,要經(jīng)過上坡、下坡、平路等路段,在自身動力不變的情況下,上坡時速度越來越慢,下坡時速度越來越快樂,平路上保持勻速行駛,如圖表示了一輛汽車在山區(qū)行駛過程中,速度隨時間變化的情況.

(1)汽車在哪些時間段保持勻速行駛?時速分別是多少?

(2)汽車遇到了幾個上坡路段?幾個下坡路段?在哪個下坡路段上所花時間最長?

(3)用自己的語言大致描述這輛汽車的行駛情況,包括遇到的山路,在山路上的速度變化情況等.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】設(shè)a,b是任意兩個實數(shù),規(guī)定a與b之間的一種運算“⊕”為:a⊕b=,

例如:1⊕(﹣3)==﹣3,(﹣3)⊕2=(﹣3)﹣2 =﹣5,

(x2+1)⊕(x﹣1)=(因為x2+1>0)

參照上面材料,解答下列問題:

(1)2⊕4=  ,(﹣2)⊕4=  ;

(2)若x>,且滿足(2x﹣1)⊕(4x2﹣1)=(﹣4)⊕(1﹣4x),求x的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,可以自由轉(zhuǎn)動的轉(zhuǎn)盤被3等分,指針落在每個扇形內(nèi)的機會均等.

1)現(xiàn)隨機轉(zhuǎn)動轉(zhuǎn)盤一次,停止后,指針指向1的概率為   

2)小明和小華利用這個轉(zhuǎn)盤做游戲,若采用下列游戲規(guī)則,你認為對雙方公平嗎?請用列表或畫樹狀圖的方法說明理由.

查看答案和解析>>

同步練習冊答案