精英家教網 > 初中數學 > 題目詳情
已知:如圖,⊙O的直徑PQ分別交弦AB,CD于點M,N,AM=BM,AB∥CD.
求證:DN=CN.
分析:根據垂定定理推知PQ⊥AB于M.然后由平行線的性質證得PQ⊥CD于N.則DN=CN.
解答:證明:∵PQ是直徑,AM=BM,
∴PQ⊥AB于M.
又∵AB∥CD,
∴PQ⊥CD于N.
∴DN=CN.
點評:本題考查了垂徑定理.垂徑定理的推論:
推論1:平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對的兩條。
推論2:弦的垂直平分線經過圓心,并且平分弦所對的兩條弧.
推論3:平分弦所對一條弧的直徑,垂直平分弦,并且平分弦所對的另一條弧.
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

已知:如圖,從地面上的點P測得大樓的某扇窗戶A的仰角為37°,再從點P測得該大樓窗戶A正上方的另一扇精英家教網窗戶B,這時PA平分∠BPC.若點P到大樓的水平距離PC為10米.
(1)求∠BPC的度數;
(2)試求窗戶B到地面的豎直高度BC(精確到0.1米).

查看答案和解析>>

科目:初中數學 來源: 題型:

(2013•南通一模)已知:如圖,直y=2x+b交x軸于點B,交y軸于點C,點A為x軸正半軸上一點,AO=CO,△ABC的面積為12.
(1)求b的值;
(2)若點P是線段AB中垂線上的點,是否存在這樣的點P,使△PBC成為直角三角形?若存在,試直接寫出所有符合條件的點P的坐標;若不存在,試說明理由;
(3)點Q為線段AB上一個動點(點Q與點A、B不重合),QE∥AC,交BC于點E,以QE為邊,在點B的異側作正方形QEFG.設AQ=m,△ABC與正方形QEFG的重疊部分的面積為S,試求S與m之間的函數關系式,并寫出m的取值范圍.

查看答案和解析>>

科目:初中數學 來源: 題型:

已知,如圖1,在平面直角坐標系內,直線l1:y=-x+4與坐標軸分別相交于點A、B,與直線l2y=
13
x
相交于點C.
(1)求點C的坐標;
(2)如圖1,平行于y軸的直線x=1交直線l1于點E,交直線l2于點D,平行于y軸的直x=a交直線l1于點M,交直線l2于點N,若MN=2ED,求a的值;
(3)如圖2,點P是第四象限內一點,且∠BPO=135°,連接AP,探究AP與BP之間的位置關系,并證明你的結論.

查看答案和解析>>

科目:初中數學 來源: 題型:解答題

已知:如圖,直y=2x+b交x軸于點B,交y軸于點C,點A為x軸正半軸上一點,AO=CO,△ABC的面積為12.
(1)求b的值;
(2)若點P是線段AB中垂線上的點,是否存在這樣的點P,使△PBC成為直角三角形?若存在,試直接寫出所有符合條件的點P的坐標;若不存在,試說明理由;
(3)點Q為線段AB上一個動點(點Q與點A、B不重合),QE∥AC,交BC于點E,以QE為邊,在點B的異側作正方形QEFG.設AQ=m,△ABC與正方形QEFG的重疊部分的面積為S,試求S與m之間的函數關系式,并寫出m的取值范圍.

查看答案和解析>>

科目:初中數學 來源:2013年江蘇省南通市通州區(qū)中考數學一模試卷(解析版) 題型:解答題

已知:如圖,直y=2x+b交x軸于點B,交y軸于點C,點A為x軸正半軸上一點,AO=CO,△ABC的面積為12.
(1)求b的值;
(2)若點P是線段AB中垂線上的點,是否存在這樣的點P,使△PBC成為直角三角形?若存在,試直接寫出所有符合條件的點P的坐標;若不存在,試說明理由;
(3)點Q為線段AB上一個動點(點Q與點A、B不重合),QE∥AC,交BC于點E,以QE為邊,在點B的異側作正方形QEFG.設AQ=m,△ABC與正方形QEFG的重疊部分的面積為S,試求S與m之間的函數關系式,并寫出m的取值范圍.

查看答案和解析>>

同步練習冊答案