【題目】如圖1,在平面直角坐標(biāo)系中,△AOB為等腰直角三角形,A(4,4).

1)點(diǎn)B坐標(biāo)為

2)如圖2,若Cx軸正半軸上一動(dòng)點(diǎn),以AC為直角邊作等腰RtACD,∠ACD=90,連OD,求∠AOD的度數(shù);

3)如圖3,過(guò)點(diǎn)Ay軸的垂線交y軸于點(diǎn)E,Fx軸負(fù)半軸上一點(diǎn),點(diǎn)GEF的延長(zhǎng)線上,以EG為直角邊作等腰RtEGH,過(guò)點(diǎn)Ax軸垂線交EH于點(diǎn)M,連FM,等式=1是否成立?若成立,請(qǐng)證明;若不成立,說(shuō)明理由.

【答案】1)(80);(290°;(3=1成立,理由詳見(jiàn)解析.

【解析】

1)因?yàn)椤?/span>AOB為等腰直角三角形,A4,4),作AEOBE,則B點(diǎn)坐標(biāo)可求;(2)作AEOBE,DFOBF,求證△DFC≌△CEA,再根據(jù)等量變換,證明△AOB為等腰直角三角形,則∠AOD的度數(shù)可求;(3)等式成立.在AM上截取AN=OF,連EN,易證△EAN≌△EOF,再根據(jù)角與角之間的關(guān)系,證明△NEM≌△FEM,則有AM-MF=OF,即可求證等式成立.

1)作AEOBE

A4,4),

OE=4,

∵△AOB為等腰直角三角形,且AEOB,

OE=EB=4

OB=8,

B80);

故答案為:(80);

2)作AEOBEDFOBF,

∵△ACD為等腰直角三角形,

AC=DC,∠ACD=90°

即∠ACF+DCF=90°,

∵∠FDC+DCF=90°,

∴∠ACF=FDC,

又∵∠DFC=AEC=90°,

∴△DFC≌△CEA

EC=DF,FC=AE

A4,4),

AE=OE=4,

FC=OE

OF+EF=CE+EF,

OF=CE

OF=DF,

∴∠DOF=45°

∵△AOB為等腰直角三角形,

∴∠AOB=45°,

∴∠AOD=AOB+DOF=90°;

3)成立,理由如下:

AM上截取AN=OF,連EN

A44),

AE=OE=4

又∵∠EAN=EOF=90°,AN=OF

∴△EAN≌△EOF(SAS)

∴∠OEF=AEN,EF=EN

又∵△EGH為等腰直角三角形,

∴∠GEH=45°,

即∠OEF+OEM=45°,

∴∠AEN+OEM=45°

又∵∠AEO=90°,

∴∠NEM=45°=FEM,

又∵EM=EM

∴△NEM≌△FEM(SAS),

MN=MF

AMMF=AMMN=AN,

AMMF=OF

=1.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,點(diǎn)A,B在反比例函數(shù)的圖象上,點(diǎn)C,D在反比例函數(shù)的圖象上,AC//BD//y軸,已知點(diǎn)A,B的橫坐標(biāo)分別為1,2,OACABD的面積之和為,則k的值為(

A. 4 B. 3 C. 2 D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,ADCE是△ABC的高,AFBCBE=3,AE5

(1)圖中有全等的三角形嗎?請(qǐng)找出來(lái)并加以證明;

(2)求線段CF的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四邊形ABCD中,AB=BC, ∠ABC=90 ,點(diǎn)EBD上,點(diǎn)F在射線CD上,AE=EF,∠AEF=90 .

1)若∠ABE=∠AEB,AGBD,垂足為G,求證:BG=GE.

2)在(1)的條件下,猜想線段CDDF的數(shù)量關(guān)系,并證明你的猜想.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】威遠(yuǎn)人民商場(chǎng)準(zhǔn)備購(gòu)進(jìn)甲、乙兩種牛奶進(jìn)行銷售,若甲種牛奶的進(jìn)價(jià)比乙種牛奶的進(jìn)價(jià)每件少5元,其用90元購(gòu)進(jìn)甲種牛奶的數(shù)量與用100元購(gòu)進(jìn)乙種牛奶的數(shù)量相同.

(1)求甲種牛奶、乙種牛奶的進(jìn)價(jià)分別是多少元?

(2)若該商場(chǎng)購(gòu)進(jìn)甲種牛奶的數(shù)量是乙種牛奶的3倍少5件,兩種牛奶的總數(shù)不超過(guò)95件,該商場(chǎng)甲種牛奶的銷售價(jià)格為49元,乙種牛奶的銷售價(jià)格為每件55元,則購(gòu)進(jìn)的甲、乙兩種牛奶全部售出后,可使銷售的總利潤(rùn)(利潤(rùn)=售價(jià)﹣進(jìn)價(jià))超過(guò)371元,請(qǐng)通過(guò)計(jì)算求出該商場(chǎng)購(gòu)進(jìn)甲、乙兩種牛奶有哪幾種方案?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列說(shuō)法中正確的個(gè)數(shù)是(

1a0都是單項(xiàng)式

2)多項(xiàng)式的次數(shù)是3

3)單項(xiàng)式的系數(shù)是

4x2+2xyy2可讀作x2、2xy、-y2的和

A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,在菱形ABCD中,AC=2,BD=2,AC、BD相交于點(diǎn)O.

(1)AB的長(zhǎng)為   

(2)如圖2,將一個(gè)足夠大的直角三角板60°角的頂點(diǎn)放在菱形ABCD的頂點(diǎn)A處,繞點(diǎn)A左右旋轉(zhuǎn),其中三角板60°角的兩邊分別與邊BC,CD相交于點(diǎn)E,F(xiàn),連接EFAC相交于點(diǎn)G.

①求證:ABE≌△ACF;

②判斷AEF是哪一種特殊三角形,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,ABCD的周長(zhǎng)為36,對(duì)角線AC、BD相交于點(diǎn)O,點(diǎn)E是CD的中點(diǎn),BD=12,則△DOE的周長(zhǎng)為( 。

A. 15 B. 18 C. 21 D. 24

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,在銳角ABC中,ABC=45°,高線AD、BE相交于點(diǎn)F.

(1)判斷BF與AC的數(shù)量關(guān)系并說(shuō)明理由;

(2)如圖2,將ACD沿線段AD對(duì)折,點(diǎn)C落在BD上的點(diǎn)M,AM與BE相交于點(diǎn)N,當(dāng)DEAM時(shí),判斷NE與AC的數(shù)量關(guān)系并說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案