在數(shù)學(xué)里,我們規(guī)定:a-n= (a≠O).無(wú)論從仿照同底數(shù)冪的除法公式來(lái)分析,還是仿照分式的約分來(lái)分析,這種規(guī)定都是合理的.正是有了這種規(guī)定,指數(shù)的范圍由非負(fù)數(shù)擴(kuò)大到全體整數(shù),概念的擴(kuò)充與完善使我們解決問(wèn)題的路更寬了.例如a2•a-3=a2+(-3)=a-1=.?dāng)?shù)的發(fā)展經(jīng)歷了漫長(zhǎng)的過(guò)程,其實(shí)人們?cè)缇桶l(fā)現(xiàn)了非實(shí)數(shù)的數(shù).人們規(guī)定:i2=-1,這里數(shù)i類(lèi)似于實(shí)數(shù)單位1,它的運(yùn)算法則與實(shí)數(shù)運(yùn)算法則完全類(lèi)似:2i+i=i(注意:由于非實(shí)數(shù)與實(shí)數(shù)單位不同,因此像2+i之類(lèi)的運(yùn)算便無(wú)法繼續(xù)進(jìn)行,2+i就是一個(gè)非實(shí)數(shù)的數(shù)),6•0.5i=3i; 2i•3i=6i2=-6;(3i)2=-9;-4的平方根為±2i;如果x2=-7,那么x=±i.…數(shù)的不斷發(fā)展進(jìn)一步證實(shí),這種規(guī)定是合理的.
(1)想一想,作這樣的規(guī)定有什么好處?
(2)試用配方法求一元二次方程x2+x+1=0的非實(shí)數(shù)解:
(3)你認(rèn)為,在學(xué)習(xí)中,當(dāng)面臨一個(gè)新的挑戰(zhàn)時(shí),我們應(yīng)如何面對(duì)?
【答案】分析:(1)通過(guò)閱讀分析,可以看出有了這種規(guī)定可以解決在實(shí)數(shù)范圍內(nèi)不能解決的問(wèn)題,負(fù)數(shù)的平方的問(wèn)題.
(2)先將原式配方后變?yōu)椋▁+2=-,再將x+當(dāng)作一個(gè)整體按照條件中的方法就可以求出其值.
(3)是一個(gè)結(jié)論開(kāi)方性試題,要體現(xiàn)一種不怕困難的精神,要求學(xué)生在學(xué)習(xí)中勇于探索.
解答:解:(1)由題意可以看出這樣規(guī)定有利于經(jīng)負(fù)數(shù)的平方運(yùn)算.
(2)原方程變形為:(x+2=-,
∴x+i,
∴x1=i-,x2=-i-
(3)我們?cè)趯W(xué)習(xí)中遇到新的挑戰(zhàn)時(shí),要大膽探索,運(yùn)用已有的知識(shí)總結(jié)出新的結(jié)論.
點(diǎn)評(píng):本題考查了一元二次方程的解法及運(yùn)用,在解答中要求學(xué)生具有較強(qiáng)的閱讀能力和分析能力,解決現(xiàn)實(shí)生活中的實(shí)際問(wèn)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如果有2個(gè)質(zhì)地大小都相同的球,球上分別標(biāo)有數(shù)字1、2,放入一個(gè)不透明的盒子里.若規(guī)定:任意摸出一球,記下小球的標(biāo)號(hào)后作為十位數(shù)字,放回盒子并搖勻;再任意摸出一球,又記下小球的標(biāo)號(hào)后作為個(gè)位數(shù)字,我們把組成的兩位數(shù)全列舉出來(lái)是11、12、21、22四種情況,這在數(shù)學(xué)中叫枚舉法.
甲、乙兩位同學(xué)在盒子里放了4個(gè)質(zhì)地大小都相同的球.球上分別標(biāo)有數(shù)字1、2、3、4,兩人約定:按上面的規(guī)定摸球組數(shù),若組成的兩位數(shù)大于23,則甲獲勝;否則乙獲勝.請(qǐng)你列舉所有可能性,然后判斷這個(gè)游戲?qū)φl(shuí)有利,為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

在數(shù)學(xué)里,我們規(guī)定:a-n=
1
an
 (a≠O).無(wú)論從仿照同底數(shù)冪的除法公式來(lái)分析,還是仿照分式的約分來(lái)分析,這種規(guī)定都是合理的.正是有了這種規(guī)定,指數(shù)的范圍由非負(fù)數(shù)擴(kuò)大到全體整數(shù),概念的擴(kuò)充與完善使我們解決問(wèn)題的路更寬了.例如a2•a-3=a2+(-3)=a-1=
1
a
.?dāng)?shù)的發(fā)展經(jīng)歷了漫長(zhǎng)的過(guò)程,其實(shí)人們?cè)缇桶l(fā)現(xiàn)了非實(shí)數(shù)的數(shù).人們規(guī)定:i2=-1,這里數(shù)i類(lèi)似于實(shí)數(shù)單位1,它的運(yùn)算法則與實(shí)數(shù)運(yùn)算法則完全類(lèi)似:2i+
1
3
i=
7
3
i(注意:由于非實(shí)數(shù)與實(shí)數(shù)單位不同,因此像2+i之類(lèi)的運(yùn)算便無(wú)法繼續(xù)進(jìn)行,2+i就是一個(gè)非實(shí)數(shù)的數(shù)),6•0.5i=3i; 2i•3i=6i2=-6;(3i)2=-9;-4的平方根為±2i;如果x2=-7,那么x=±
7
i.…數(shù)的不斷發(fā)展進(jìn)一步證實(shí),這種規(guī)定是合理的.
(1)想一想,作這樣的規(guī)定有什么好處?
(2)試用配方法求一元二次方程x2+x+1=0的非實(shí)數(shù)解:
(3)你認(rèn)為,在學(xué)習(xí)中,當(dāng)面臨一個(gè)新的挑戰(zhàn)時(shí),我們應(yīng)如何面對(duì)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

如果有2個(gè)質(zhì)地大小都相同的球,球上分別標(biāo)有數(shù)字1、2,放入一個(gè)不透明的盒子里.若規(guī)定:任意摸出一球,記下小球的標(biāo)號(hào)后作為十位數(shù)字,放回盒子并搖勻;再任意摸出一球,又記下小球的標(biāo)號(hào)后作為個(gè)位數(shù)字,我們把組成的兩位數(shù)全列舉出來(lái)是11、12、21、22四種情況,這在數(shù)學(xué)中叫枚舉法.
甲、乙兩位同學(xué)在盒子里放了4個(gè)質(zhì)地大小都相同的球.球上分別標(biāo)有數(shù)字1、2、3、4,兩人約定:按上面的規(guī)定摸球組數(shù),若組成的兩位數(shù)大于23,則甲獲勝;否則乙獲勝.請(qǐng)你列舉所有可能性,然后判斷這個(gè)游戲?qū)φl(shuí)有利,為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:江蘇期中題 題型:解答題

在數(shù)學(xué)里,我們規(guī)定:a-n= (a≠0).無(wú)論從仿照同底數(shù)冪的除法公式來(lái)分析,還是仿照分式的約分來(lái)分析,這種規(guī)定都是合理的.正是有了這種規(guī)定,指數(shù)的范圍由非負(fù)數(shù)擴(kuò)大到全體整數(shù),概念的擴(kuò)充與完善使我們解決問(wèn)題的路更寬了。例如a2·a-3=a2+(-3)=a-1= ,數(shù)的發(fā)展經(jīng)歷了漫長(zhǎng)的過(guò)程,其實(shí)人們?cè)缇桶l(fā)現(xiàn)了非實(shí)數(shù)的數(shù).人們規(guī)定:i2=-1,這里數(shù)i類(lèi)似于實(shí)數(shù)單位1,它的運(yùn)算法則與實(shí)數(shù)運(yùn)算法則完全類(lèi)似:2i+i=i(注意:由于非實(shí)數(shù)與實(shí)數(shù)單位不同,因此像2+i之類(lèi)的運(yùn)算便無(wú)法繼續(xù)進(jìn)行,2+i就是一個(gè)非實(shí)數(shù)的數(shù)),6·0.5i=3i;2i·3i=6i2=-6;(3i)2=-9;-4的平方根為±2i;如果x2=-7,那么x=± i.…數(shù)的不斷發(fā)展進(jìn)一步證實(shí),這種規(guī)定是合理的.試用配方法求一元二次方程x2+x+1=0的非實(shí)數(shù)解:

查看答案和解析>>

同步練習(xí)冊(cè)答案