(2010•麗江)如圖,OP平分∠AOB,且OA=OB.
(1)寫出圖中三對你認(rèn)為全等的三角形(注:不添加任何輔助線);
(2)從(1)中任選一個結(jié)論進行證明.

【答案】分析:先根據(jù)∠AOP=∠BOP,OP=OP,OA=OB,(SAS)得出△APO≌△BPO,其他三角形全等就能依次得出.
解答:解:(1)△APO≌△BPO,△ADO≌△BCO,△OCP≌△ODP,△ACP≌△BDP.

(2)證明△APO≌△BPO,
∵OP平分∠AOB,
∴∠AOP=∠BOP,
又∵OP=OP,OA=OB,(SAS)
∴△APO≌△BPO.
點評:三角形全等的判定是中考的熱點,一般以考查三角形全等的方法為主,判定兩個三角形全等,先根據(jù)已知條件或求證的結(jié)論確定三角形,然后再根據(jù)三角形全等的判定方法,看缺什么條件,再去證什么條件.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2010年全國中考數(shù)學(xué)試題匯編《一次函數(shù)》(03)(解析版) 題型:解答題

(2010•麗江)如圖,在平面直角坐標(biāo)系中,O為坐標(biāo)原點,四邊形OABC是矩形,點A、B的坐標(biāo)分別為A(-4,0)、B(-4,2).
(1)現(xiàn)將矩形OABC繞點O順時針方向旋轉(zhuǎn)90°后得到矩形OA1B1C1,請畫出矩形OA1B1C1;
(2)畫出直線BC1,并求直線BC1的函數(shù)關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年云南省臨滄中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2010•麗江)如圖,在平面直角坐標(biāo)系中,O為坐標(biāo)原點,四邊形OABC是矩形,點A、B的坐標(biāo)分別為A(-4,0)、B(-4,2).
(1)現(xiàn)將矩形OABC繞點O順時針方向旋轉(zhuǎn)90°后得到矩形OA1B1C1,請畫出矩形OA1B1C1;
(2)畫出直線BC1,并求直線BC1的函數(shù)關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年云南省麗江中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2010•麗江)如圖,在平面直角示系中,A、B兩點的坐標(biāo)分別是A(-1,0)、B(4,0),點C在y軸的負(fù)半軸上,且∠ACB=90°
(1)求點C的坐標(biāo);
(2)求經(jīng)過A、B、C三點的拋物線的解析式;
(3)直線l⊥x軸,若直線l由點A開始沿x軸正方向以每秒1個單位的速度勻速向右平移,設(shè)運動時間為t(0≤t≤5)秒,運動過程中直線l在△ABC中所掃過的面積為S,求S與t的函數(shù)關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年云南省迪慶中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2010•麗江)如圖,在平面直角示系中,A、B兩點的坐標(biāo)分別是A(-1,0)、B(4,0),點C在y軸的負(fù)半軸上,且∠ACB=90°
(1)求點C的坐標(biāo);
(2)求經(jīng)過A、B、C三點的拋物線的解析式;
(3)直線l⊥x軸,若直線l由點A開始沿x軸正方向以每秒1個單位的速度勻速向右平移,設(shè)運動時間為t(0≤t≤5)秒,運動過程中直線l在△ABC中所掃過的面積為S,求S與t的函數(shù)關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年云南省大理中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2010•麗江)如圖,在平面直角示系中,A、B兩點的坐標(biāo)分別是A(-1,0)、B(4,0),點C在y軸的負(fù)半軸上,且∠ACB=90°
(1)求點C的坐標(biāo);
(2)求經(jīng)過A、B、C三點的拋物線的解析式;
(3)直線l⊥x軸,若直線l由點A開始沿x軸正方向以每秒1個單位的速度勻速向右平移,設(shè)運動時間為t(0≤t≤5)秒,運動過程中直線l在△ABC中所掃過的面積為S,求S與t的函數(shù)關(guān)系式.

查看答案和解析>>

同步練習(xí)冊答案