【題目】婷婷和她媽媽玩猜拳游戲.規(guī)定每人每次至少要出一個手指,兩人出拳的手指數(shù)之和為偶數(shù)時婷婷獲勝.那么,婷婷獲勝的概率為______

【答案】

【解析】

根據(jù)題意,可用列舉法、列表法或樹狀統(tǒng)計圖來計算出總次數(shù)和婷婷獲勝的次數(shù),從而求出婷婷獲勝的概率

解:根據(jù)題意,一共有25個等可能的結(jié)果,即(1,1),(1,2),(1,3),(1,4)(1,5),(2,1)(2,2)(2,3),(2,4),(2,5)(3,1),(3,2),(3,3)(3,4),(3,5)(4,1),(4,2),(4,3)(4,4),(4,5),(5,1),(5,2),(5,3),(5,4),(5,5);

兩人出拳的手指數(shù)之和為偶數(shù)的結(jié)果有13個,

所以婷婷獲勝的概率為

故答案為:

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知反比例函數(shù)x0)的圖象經(jīng)過點A4,2),過AACy軸于點C.點B為反比例函數(shù)圖象上的一動點,過點BBDx軸于點D,連接AD.直線BCx軸的負半軸交于點E

1)若BD3OC,求△BDE的面積;

2)是否存在點B,使得四邊形ACED為平行四邊形?若存在,請求出點B的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1所示在矩形ABCD中,AB6,AD3,點E、F分別是邊DCDA的三等分點(DEEC,DFAF),四邊形DFGE為矩形,連接BG

1)問題發(fā)現(xiàn):在圖(1)中,   ;

2)拓展探究:將圖(1)中的矩形DFGE繞點D旋轉(zhuǎn)一周,在旋轉(zhuǎn)過程中的大小有無變化?請僅就圖(2)的情形給出證明;

3)問題解決:當矩形DFGE旋轉(zhuǎn)至BG、E三點共線時,請直接寫出線段CE的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】今年豬肉價格受非洲豬瘟疫情影響,有較大幅度的上升,為了解某地區(qū)養(yǎng)殖戶受非洲豬瘟疫情感染受災(zāi)情況,現(xiàn)從該地區(qū)建檔的養(yǎng)殖戶中隨機抽取了部分養(yǎng)殖戶進行了調(diào)查(把調(diào)查結(jié)果分為四個等級:A級:非常嚴重;B級:嚴重;C級:一般;D級:沒有感染),并將調(diào)查結(jié)果繪制成如下兩幅不完整的統(tǒng)計圖.請根據(jù)統(tǒng)計圖中的信息解決下列問題:

1)本次抽樣調(diào)查的養(yǎng)殖戶的總戶數(shù)是   ;把圖2條形統(tǒng)計圖補充完整.

2)若該地區(qū)建檔的養(yǎng)殖戶有1500戶,求非常嚴重與嚴重的養(yǎng)殖戶一共有多少戶?

3)某調(diào)研單位想從5戶建檔養(yǎng)殖戶(分別記為a,b,c,d,e)中隨機選取兩戶,進一步跟蹤監(jiān)測病毒傳播情況,請用列表或畫樹狀圖的方法求出選中養(yǎng)殖戶e的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,反比例函數(shù)yx0)的圖象與直線ymx交于點C,直線ly4分別交兩函數(shù)圖象于點A14)和點B,過點BBDl交反比例函數(shù)圖象于點 D

1)求反比例函數(shù)的解析式;

2)當BD2AB時,求點B的坐標;

3)在(2)的條件下,直接寫出不等式mx的解集.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點、是直線與反比例函數(shù)圖象的兩個交點,軸于點C,己知點D0,1),連接ADBD、BC

1)求反比例函數(shù)和直線AB的表達式;

2)根據(jù)函數(shù)圖象直接寫出當時不等式的解集;

3)設(shè)△ABC和△ABD的面積分別為、,求的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】將兩個等腰Rt△ADE,Rt△ABC(其中∠DAE=∠ABC=90°AB=BC,AD=AE)如圖放置在一起,點EAB上,ACDE交于點H,連接BHCE,且∠BCE=15°,下列結(jié)論:AC垂直平分DE;②△CDE為等邊三角形;③tan∠BCD=,其中正確的結(jié)論是____________ (填寫所有正確結(jié)論的序號)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,某大樓的頂部有一塊廣告牌,小背在山坡的坡腳處測得廣告牌底部的仰角為45°,沿坡面向上走到處測得廣告牌頂部的仰角為30°.已知山坡的坡度為米,米.


此題考查了折疊的性質(zhì)、矩形的性質(zhì)、全等三角形的判定與性質(zhì)以及勾股定理的應(yīng)用.熟練掌握折疊的性質(zhì)是關(guān)鍵.

1)求點距地面的高度;

2)求廣告牌的高度.(結(jié)果保留根號)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】20195月,“亞洲文明對話大會”在北京成功舉辦,某研究機構(gòu)為了了解10-60歲年年齡段市民對本次大會的關(guān)注程度,隨機選取了100名年齡在該范圍內(nèi)的市民進行了調(diào)查,并將搜集到的數(shù)據(jù)制成了尚不完整的頻數(shù)分布表、頻數(shù)分布直方圖和扇形統(tǒng)計圖,如下所示:

組別

年齡段

頻數(shù)(人數(shù))

第一組

5

第二組

第三組

35

第四組

20

第五組

15

請直接寫出第3組人數(shù)在扇形統(tǒng)計圖中所對應(yīng)的圓心角是_________度;假設(shè)該市現(xiàn)有10-60歲的市民300萬人,則40-50歲年齡段的關(guān)注本次大會的人數(shù)約有___________萬人.

查看答案和解析>>

同步練習冊答案