【題目】在平面直角坐標(biāo)系xOy中,點(diǎn)A(x,0),B(x,y),若線段AB上存在一點(diǎn)Q滿足,則稱點(diǎn)Q是線段AB的“倍分點(diǎn)”.
(1)若點(diǎn)A(1,0),AB=3,點(diǎn)Q是線段AB的“倍分點(diǎn)”.
①求點(diǎn)Q的坐標(biāo);
②若點(diǎn)A關(guān)于直線y=x的對(duì)稱點(diǎn)為A′,當(dāng)點(diǎn)B在第一象限時(shí),求;
(2)⊙T的圓心T(0,t),半徑為2,點(diǎn)Q在直線y= x上,⊙T上存在點(diǎn)B,使點(diǎn)Q是線段AB的“倍分點(diǎn)”,直接寫(xiě)出t的取值范圍.
【答案】(1)①Q(1,1)或Q'(1,﹣1),②;(2)t的取值范圍為﹣4≤t≤4
【解析】
(1) ①根據(jù) “倍分點(diǎn)”的定義及A(1,0),AB=3,可得Q的坐標(biāo);②點(diǎn)A(1,0)關(guān)于直線y=x的對(duì)稱點(diǎn)為A′(0,1),可得QA=QA′,可得答案;
(2)分①當(dāng)A,B都在⊙T1上時(shí),可得t的值,②當(dāng)⊙T2上只有一個(gè)點(diǎn)Q是線段AB的“倍分點(diǎn)”時(shí),過(guò)點(diǎn)T2作T2Q⊥圖象L于點(diǎn)Q,交⊙T2于點(diǎn)N,過(guò)點(diǎn)Q作QD⊥x軸于點(diǎn)D,可得t的取值范圍.
解:(1)如圖1,
∵A(1,0),AB=3
∴B(1,3)或B'(1,﹣3)
∵
∴Q(1,1)或Q'(1,﹣1)
(2)點(diǎn)A(1,0)關(guān)于直線y=x的對(duì)稱點(diǎn)為A′(0,1),如圖1,
∴QA=QA′
∴,
(3)①當(dāng)A,B都在⊙T1上時(shí),⊙T1與L沒(méi)有交點(diǎn),
∵⊙T1的半徑為2,
∴此時(shí)點(diǎn)T1的坐標(biāo)為(0,﹣4);
②當(dāng)⊙T2上只有一個(gè)點(diǎn)Q是線段AB的“倍分點(diǎn)”時(shí),過(guò)點(diǎn)T2作T2Q⊥圖象L于點(diǎn)Q,交⊙T2于點(diǎn)N,過(guò)點(diǎn)Q作QD⊥x軸于點(diǎn)D,
∵圖象L的解析式為y=x(x>0),
∴∠QOT=60°,∠OT2Q=30°.
∵點(diǎn)T2的坐標(biāo)為(0,t),
∴OQ=t,DQ=OQ=t,T2O=t.
由“倍分點(diǎn)”的定義可知:OB=2DQ,即t﹣2=t,
解得:t=4,
綜上所述:t的取值范圍為﹣4≤t≤4.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直角坐標(biāo)平面內(nèi),小明站在點(diǎn)A(﹣10,0)處觀察y軸,眼睛距地面1.5米,他的前方5米處有一堵墻DC,若墻高DC=2米,則小明在y軸上的盲區(qū)(即OE的長(zhǎng)度)為_____米.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】有A、B兩組卡片共5張,A組的三張分別寫(xiě)有數(shù)字2,4,6,B組的兩張分別寫(xiě)有3,5.它們除了數(shù)字外沒(méi)有任何區(qū)別,
(1)隨機(jī)從A組抽取一張,求抽到數(shù)字為2的概率;
(2)隨機(jī)地分別從A組、B組各抽取一張,請(qǐng)你用列表或畫(huà)樹(shù)狀圖的方法表示所有等可能的結(jié)果.現(xiàn)制定這樣一個(gè)游戲規(guī)則:若選出的兩數(shù)之積為3的倍數(shù),則甲獲勝;否則乙獲勝.請(qǐng)問(wèn)這樣的游戲規(guī)則對(duì)甲乙雙方公平嗎?為什么?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC內(nèi)接于⊙O,AB=AC,∠BAC=36°,過(guò)點(diǎn)A作AD∥BC,與∠ABC的平分線交于點(diǎn)D,BD與AC交于點(diǎn)E,與⊙O交于點(diǎn)F.
(1)求∠DAF的度數(shù);
(2)求證:AE2=EFED;
(3)求證:AD是⊙O的切線.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,直線y=x+2與雙曲線相交于點(diǎn)A(m,3).
(1)求反比例函數(shù)的表達(dá)式;
(2)畫(huà)出直線和雙曲線的示意圖;
(3)若P是坐標(biāo)軸上一點(diǎn),當(dāng)OA=PA時(shí).直接寫(xiě)出點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線的圖象與x軸交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左邊),與y軸交于點(diǎn)C,點(diǎn)D為拋物線的頂點(diǎn).
(1)求A、B、C的坐標(biāo);
(2)點(diǎn)M為線段AB上一點(diǎn)(點(diǎn)M不與點(diǎn)A、B重合),過(guò)點(diǎn)M作x軸的垂線,與直線AC交于點(diǎn)E,與拋物線交于點(diǎn)P,過(guò)點(diǎn)P作PQ∥AB交拋物線于點(diǎn)Q,過(guò)點(diǎn)Q作QN⊥x軸于點(diǎn)N.若點(diǎn)P在點(diǎn)Q左邊,當(dāng)矩形PQMN的周長(zhǎng)最大時(shí),求△AEM的面積;
(3)在(2)的條件下,當(dāng)矩形PMNQ的周長(zhǎng)最大時(shí),連接DQ.過(guò)拋物線上一點(diǎn)F作y軸的平行線,與直線AC交于點(diǎn)G(點(diǎn)G在點(diǎn)F的上方).若FG=DQ,求點(diǎn)F的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在一條河的北岸有兩個(gè)目標(biāo)M、N,現(xiàn)在位于它的對(duì)岸設(shè)定兩個(gè)觀測(cè)點(diǎn)A、B.已知AB∥MN,在A點(diǎn)測(cè)得∠MAB=60°,在B點(diǎn)測(cè)得∠MBA=45°,AB=600米.
(1)求點(diǎn)M到AB的距離;(結(jié)果保留根號(hào))
(2)在B點(diǎn)又測(cè)得∠NBA=53°,求MN的長(zhǎng).(結(jié)果精確到1米)
(參考數(shù)據(jù):≈1.732,sin53°≈0.8,cos53°≈0.6,tan53°≈1.33,cot53°≈0.75)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了預(yù)防疾病,某單位對(duì)辦公室采用藥熏消毒法進(jìn)行消毒,已知藥物燃燒時(shí),室內(nèi)每立方米空氣中的含藥量y(毫克)與時(shí)間x(分鐘)成為正比例,藥物燃燒后,y與x成反比例(如圖),現(xiàn)測(cè)得藥物8分鐘燃畢,此時(shí)室內(nèi)空氣中每立方米的含藥量6毫克,請(qǐng)根據(jù)題中所提供的信息,解答下列問(wèn)題:
(1)藥物燃燒時(shí),y關(guān)于x的函數(shù)關(guān)系式為________,自變量x的取值范為________;藥物燃燒后,y關(guān)于x的函數(shù)關(guān)系式為________.
(2)研究表明,當(dāng)空氣中每立方米的含藥量低于1.6毫克時(shí)員工方可進(jìn)辦公室,那么從消毒開(kāi)始,至少需要經(jīng)過(guò)________分鐘后,員工才能回到辦公室;
(3)研究表明,當(dāng)空氣中每立方米的含藥量不低于3毫克且持續(xù)時(shí)間不低于10分鐘時(shí),才能有效殺滅空氣中的病菌,那么此次消毒是否有效?為什么?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,矩形OABC在平面直角坐標(biāo)系中,若x2﹣2x+2=0的兩根是x1、x2,且OC=x1+x2,OA=x1x2
(1)求B點(diǎn)的坐標(biāo).
(2)把△ABC沿AC對(duì)折,點(diǎn)B落在點(diǎn)B′處,線段AB′與x軸交于點(diǎn)D,求直線BD的解析式.
(3)在平面上是否存在點(diǎn)P,使D、C、B、P四點(diǎn)形成的四邊形為平形四邊形?若存在,請(qǐng)直接寫(xiě)出P點(diǎn)坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com