【題目】如圖,在平面直角坐標系中,矩形OCDE的頂點C和E分別在y軸的正半軸和x軸的正半軸上,OC=8,OE=17,拋物線y= x2﹣3x+m與y軸相交于點A,拋物線的對稱軸與x軸相交于點B,與CD交于點K.
(1)將矩形OCDE沿AB折疊,點O恰好落在邊CD上的點F處.
①點B的坐標為(),BK的長是 , CK的長是
②求點F的坐標;
③請直接寫出拋物線的函數表達式;
(2)將矩形OCDE沿著經過點E的直線折疊,點O恰好落在邊CD上的點G處,連接OG,折痕與OG相交于點H,點M是線段EH上的一個動點(不與點H重合),連接MG,MO,過點G作GP⊥OM于點P,交EH于點N,連接ON,點M從點E開始沿線段EH向點H運動,至與點N重合時停止,△MOG和△NOG的面積分別表示為S1和S2 , 在點M的運動過程中,S1S2(即S1與S2的積)的值是否發(fā)生變化?若變化,請直接寫出變化范圍;若不變,請直接寫出這個值.
溫馨提示:考生可以根據題意,在備用圖中補充圖形,以便作答.
【答案】
(1)(10,0);8;10
②在RT△FBK中,∵∠FKB=90°,BF=OB=10,BK=OC=8,
∴FK= =6,
∴CF=CK﹣FK=4,
∴點F坐標(4,8).
③設OA=AF=x,
在RT△ACF中,∵AC2+CF2=AF2 ,
∴(8﹣x)2+42=x2 ,
∴x=5,
∴點A坐標(0,5),代入拋物線y= x2﹣3x+m得m=5,
∴拋物線為y= x2﹣3x+5
(2)
不變.S1S2=189.理由:如圖2中 ,
在RT△EDG中,∵GE=EO=17,ED=8,
∴DG= = =15,
∴CG=CD﹣DG=2,
∴OG= = =2 ,
∵CP⊥OM,MH⊥OG,
∴∠NPN=∠NHG=90°,
∵∠HNG+∠HGN=90°,∠PNM+∠PMN=90°,∠HNG=∠PNM,
∴∠HGN=∠NMP,
∵∠NMP=∠HMG,∠GHN=∠GHM,
∴△GHN∽△MHG,
∴ ,
∴GH2=HNHM,
∵GH=OH= ,
∴HNHM=17,
∵S1S2= OGHN OGHM=( 2 )217=289
【解析】解:(1)如圖1中 ,
①∵拋物線y= x2﹣3x+m的對稱軸x=﹣ =10,
∴點B坐標(10,0),
∵四邊形OBKC是矩形,
∴CK=OB=10,KB=OC=8,
故答案分別為10,0,8,10.
【考點精析】解答此題的關鍵在于理解勾股定理的概念的相關知識,掌握直角三角形兩直角邊a、b的平方和等于斜邊c的平方,即;a2+b2=c2,以及對矩形的性質的理解,了解矩形的四個角都是直角,矩形的對角線相等.
科目:初中數學 來源: 題型:
【題目】如圖,∠MON=90°,點A,B分別在射線OM,ON上移動,∠OAB的平分線與∠OBA的外角平分線交于點C,試猜想:隨著點A,B的移動,∠ACB的大小是否發(fā)生變化,并說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】光華農機租賃公司共有50臺聯(lián)合收割機,其中甲型20臺,乙型30臺,先將這50臺聯(lián)合收割機派往A、B兩地區(qū)收割小麥,其中30臺派往A地區(qū),20臺派往B地區(qū).兩地區(qū)與該農機租賃公司商定的每天的租賃價格見表:
每臺甲型收割機的租金 | 每臺乙型收割機的租金 | |
A地區(qū) | 1800 | 1600 |
B地區(qū) | 1600 | 1200 |
(1)設派往A地區(qū)x臺乙型聯(lián)合收割機,租賃公司這50臺聯(lián)合收割機一天獲得的租金為y(元),求y與x間的函數關系式,并寫出x的取值范圍;
(2)若使農機租賃公司這50臺聯(lián)合收割機一天獲得的租金總額不低于79 600元,說明有多少種分配方案,并將各種方案設計出來;
(3)如果要使這50臺聯(lián)合收割機每天獲得的租金最高,請你為光華農機租賃公司提一條合理化建議.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某商場服裝部分為了解服裝的銷售情況,統(tǒng)計了每位營業(yè)員在某月的銷售額(單位:萬元),并根據統(tǒng)計的這組銷售額的數據,繪制出如下的統(tǒng)計圖①和圖②.請根據相關信息,解答下列問題:
該商場服裝營業(yè)員的人數為 ,圖①中m的值為 ;
求統(tǒng)計的這組銷售額數據的平均數、眾數和中位數.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】(1)如圖1,平行四邊形紙片ABCD中,AD=5,S甲行四邊形紙片ABCD=15,過點A作AE⊥BC,垂足為E,沿AE剪下△ABE,將它平移至△DCE′的位置,拼成四邊形AEE′D,則四邊形AEE′D的形狀為
A.平行四邊形
B.菱形
C.矩形
D.正方形
(2)如圖2,在(1)中的四邊形紙片AEE′D中,在EE′上取一點F,使EF=4,剪下△AEF,剪下△AEF,將它平移至△DE′F′的位置,拼成四邊形AFF′D.
求證:四邊形AFF′D是菱形.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知a、b、c滿足|a﹣|++(c﹣4)2=0.
(1)求a、b、c的值;
(2)判斷以a、b、c為邊能否構成三角形?若能構成三角形,此三角形是什么形狀?并求出三角形的面積;若不能,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在矩形ABCD中,AB=3,AD=4,動點Q從點A出發(fā),以每秒1個單位的速度,沿AB向點B移動;同時點P從點B出發(fā),仍以每秒1個單位的速度,沿BC向點C移動,連接QP,QD,PD.若兩個點同時運動的時間為x秒(0<x≤3),解答下列問題:
(1)設△QPD的面積為S,用含x的函數關系式表示S;當x為何值時,S有最大值?并求出最小值;
(2)是否存在x的值,使得QP⊥DP?試說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,當直線BC、DC被直線AB所截時,∠1的同位角是_______,同旁內角是_______;當直線AB、AC被直線BC所截時,∠1的同位角是________;當直線AB、BC被直線CD所截時,∠2的內錯角是________
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com