如圖,AC為⊙O的直徑,B、D、E都是⊙O上的點,則∠A+∠B+∠C的度數(shù)為    度.
【答案】分析:連接CD,構(gòu)造直徑所對的圓周角,即∠ADC=90°.再根據(jù)直角三角形的兩個銳角互余,以及等弧所對的圓周角進行計算.
解答:解:連接CD
∵AC為⊙O的直徑
∴∠ADC=90°
∴∠A+∠ACD=90°
又∠B=∠DCE
∴∠A+∠B+∠C=90°.
點評:綜合運用了圓周角定理的推論以及直角三角形的兩個銳角互余的性質(zhì).
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

如圖1,在Rt△ABC中,∠A=90°,AB=AC,BC=4
2
,另有一等腰梯形DEFG(GF∥DE)的底邊DE與BC重合,兩腰分別落在AB,AC上,且G,F(xiàn)分別是AB,AC的中點.
精英家教網(wǎng)
(1)求等腰梯形DEFG的面積;
(2)操作:固定△ABC,將等腰梯形DEFG以每秒1個單位的速度沿BC方向向右運動,直到點D與點C重合時停止.設運動時間為x秒,運動后的等腰梯形為DEF′G′(如圖2).
探究1:在運動過程中,四邊形BDG′G能否是菱形?若能,請求出此時x的值;若不能,請說明理由;
探究2:設在運動過程中△ABC與等腰梯形DEFG重疊部分的面積為y,求y與x的函數(shù)關系式.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

23、(1)如圖1,已知直線m∥n,A,B為直線n上的兩點,C,D為直線m上的兩點.
①請你判斷△ABC與△ABD的面積具有怎樣的關系?
②若點D在直線m上可以任意移動,△ABD的面積是否發(fā)生變化?并說明你的理由.
(2)如圖2,已知:在四邊形ABCD中,連接AC,過點D作EF∥AC,P為EF上任意一點(與點D不重合).請你說明四邊形ABCD的面積與四邊形ABCP的面積相等.
(3)如圖3是一塊五邊形花壇的示意圖.為了使其更規(guī)整一些,園林管理人員準備將其修整為四邊形,根據(jù)花壇周邊的情況,計劃在BC的延長線上取一點F,沿EF取直,構(gòu)成新的四邊形ABFE,并使得四邊形ABFE的面積與五邊形ABCDE的面積相等.請你在圖3中畫出符合要求的四邊形ABFE,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(1)如圖A、B兩個化工廠位于一段直線形河堤的同側(cè),A工廠至河堤的距離AC為1km,B工廠到河堤的距離BD為2km,經(jīng)測量河堤上C、D兩地間的距離為6km.現(xiàn)準備在河堤邊修建一個污水處理廠,為使A、B兩廠到污水處理廠的排污管道最短,污水處理廠應建在距C地多遠的地方?
精英家教網(wǎng)
(2)通過以上解答,充分展開聯(lián)想,運用數(shù)形結(jié)合思想構(gòu)造圖形,嘗試解決下面問題:若y=
x2+1
+
(9-x)2+4
,當x為何值時,y的值最小,并求出這個最小值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

探索函數(shù)y=x+
1
x
(x>0)
的圖象和性質(zhì).
已知函數(shù)y=x(x>0)和y=
1
x
(x>0)
的圖象如圖所示,若P為函數(shù)y=x+
1
x
(x>0)
圖象上的點,過P作PC垂直于x軸且與直線、雙曲線、x軸分別交于點A、B、C,則PC=x+
1
x
=AC+BC,從而“點P可以看作點A的沿豎直方向向上平移BC個長度單位(PA=BC)而得到”.
(1)根據(jù)以上結(jié)論,請在下圖中作出函數(shù)y=x+
1
x
(x>0)圖象上的一些點,并畫出該函數(shù)的圖象.
(2)觀察圖象,寫出函數(shù)y=x+
1
x
(x>0)兩條不同類型的性質(zhì).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

如圖(1),在水平地面點A處有一網(wǎng)球發(fā)射器向空中發(fā)射網(wǎng)球,網(wǎng)球飛行路線是一條拋物線,在地面上落點為B.有人在直線AB上點C(靠點B一側(cè))豎直向上擺放無蓋的圓柱形桶,試圖讓網(wǎng)球落入桶內(nèi).已知AB=4米,AC=3米,網(wǎng)球飛行最大高度OM=5米,圓柱形桶的直徑為0.5米,高為0.3米(網(wǎng)球的體積和圓柱形桶的厚度忽略不計).
(1)在如圖(2)建立的坐標系下,求網(wǎng)球飛行路線的拋物線解析式;
(2)若豎直擺放5個圓柱形桶時,則網(wǎng)球能落入桶內(nèi)嗎?說明理由;
(3)若要使網(wǎng)球能落入桶內(nèi),求豎直擺放的圓柱形桶的個數(shù).

查看答案和解析>>

同步練習冊答案