A(1,0),B(3,0)。
1.(1)求拋物線的解析式;
2.
所有點P的坐標;
3.(3)設拋物線交y軸于點C,問該拋物線對稱軸上是否存在點M,使得△MAC的周長最小。若存在,求出點M的坐標;若不存在,請說明理由。
科目:初中數學 來源: 題型:閱讀理解
閱讀下面材料:解答問題
為解方程 (x2-1)2-5 (x2-1)+4=0,我們可以將(x2-1)看作一個整體,然后設 x2-1=y(tǒng),那么原方程可化為 y2-5y+4=0,解得y1=1,y2=4.
當y=1時,x2-1=1,∴x2=2,∴x=±;當y=4時,x2-1=4,∴x2=5,∴x=±,
故原方程的解為 x1=,x2=-,x3=,x4=-.
上述解題方法叫做換元法;
請利用換元法解方程.(x 2-x)2 - 4 (x 2-x)-12=0
查看答案和解析>>
科目:初中數學 來源: 題型:
現(xiàn)有7名同學測得某大廈的高度如下:(單位:m)
29.8 30.0 30.0 30.0 30.2 44.0 30.0
1.(1)在這組數據中,中位數是_____________,眾數是_____________,平均數是_____________;
2.(2)憑經驗,你覺得此大廈大概有多高?請簡要說明理由。
查看答案和解析>>
科目:初中數學 來源: 題型:
已知:如圖1,在Rt⊿ACB中,∠C=90°,AC=4cm,BC=3cm,點P由點B出發(fā)沿BA方向向點A勻速運動,速度為1cm/s;點Q由點A出發(fā)沿AC方向向點C勻速運動,速度為2cm/s;連接PQ.若設運動的時間為t(s)(0<t<2).解答下列問題:
1.①.當t為何值時,PQ∥BC?
2.②.設⊿AQP的面積為y(cm),求y與t之間的函數關系式;
3.③.是否存在某一時刻t,使線段PQ恰好把Rt⊿ACB的周長和面積同時平分?若存在,求出此時t的值;若不存在,說明理由;
4.④.如圖2,連接PC,并把⊿PQC沿QC翻折,得到四邊形PQC,那么是否存在某時刻t,使四邊形PQC為菱形?若存在,求出此時菱形的邊長;若不存在,說明理由。
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com