問題:你能比較兩個(gè)數(shù)20042005和20052004的大小嗎?

為了解決這個(gè)問題,我們先把它抽象成數(shù)學(xué)問題,寫出它的一般形式,即比較nn+1和(n+1)n的大小(n是自然數(shù)),然后,我們從分析n=1,2,3,…這些簡(jiǎn)單情形入手,從中發(fā)現(xiàn)規(guī)律,經(jīng)過歸納,猜想出結(jié)論.

(1)通過計(jì)算,比較下列各組中兩個(gè)數(shù)的大小(填>、<或=):

①12________21;②23________32;③34________43;④45________54;⑤56________65;…

(2)從第(1)題的結(jié)果經(jīng)過歸納,可以猜想出nn+1與(n+1)n的大小關(guān)系怎樣?

(3)根據(jù)上面的歸納猜想得到的一般結(jié)論,試比較下面兩數(shù)的大。20042005________20052004

答案:
解析:

  (1)<;<;>;>;>

  (2)當(dāng)n<3時(shí),nn+1<(n+1)n;當(dāng)n≥3時(shí),nn+1>(n+1)n

  (3)>

  剖析:先從特例中發(fā)現(xiàn)規(guī)律,再應(yīng)用規(guī)律解決問題,要注意的是對(duì)規(guī)律進(jìn)行分類討論.


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

22、問題:你能比較兩個(gè)數(shù)20022003與20032002的大小嗎?為了解決這個(gè)問題,我們先把它抽象成這樣的問題:寫成它的一般形式,即比較nn+1和(n+1)n的大。╪是自然數(shù)).然后,我們分析n=1,n=2,n=3…這些簡(jiǎn)單情形入手,從而發(fā)現(xiàn)規(guī)律,經(jīng)過歸納,才想出結(jié)論.
(1)通過計(jì)算,比較下列各組中兩個(gè)數(shù)的大。ㄔ诳崭裰刑睢埃肌薄埃尽薄=”)
①12<21②23<32③34>43④45>54
⑤56>65⑥66>75
(2)從第(1)題的結(jié)果經(jīng)過歸納,可以猜想出nn+1和(n+1)n的大小關(guān)系;
(3)根據(jù)上面歸納猜想得到的一般結(jié)論,試比較下列兩個(gè)數(shù)的大小:20022003>20032002

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(一)問題:你能比較兩個(gè)數(shù)20092010和20102009的大小嗎?
為了解決這個(gè)問題,我們先把它抽象成數(shù)學(xué)問題,寫出他的一般形式,即比較nn+1和(n+1)n的大。╪為自然數(shù)),然后我們分析這些簡(jiǎn)單情形入手,從中發(fā)現(xiàn)規(guī)律,經(jīng)過歸納,猜想出結(jié)論.
(1)通過計(jì)算,比較下列各組數(shù)的大。
①12
 
21;②23
 
32;③34
 
43;④45
 
54;⑤56
 
65
(2)從第(1)題的結(jié)果經(jīng)過歸納,可以猜想出nn+1
 
(n+1)n(n≥3)
(3)根據(jù)上面歸納猜想得到的一般結(jié)論,試比較下列兩個(gè)數(shù)的大小:
①20092010
 
20102009;②-20092010
 
-20102009
(二)請(qǐng)比較大小:
231981+1
231982+1
 
231982+1
231983+1
,并寫出理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

問題:你能比較兩個(gè)數(shù)20062007與20072006的大小嗎?為了解決問題,首先把它抽象成數(shù)學(xué)問題,寫出它的一般形式,即比較nn+1與(n+1)n的大小(n是正整數(shù)),然后,從分析n=1,n=2,n=3,…,這些簡(jiǎn)單情形入手,從中發(fā)現(xiàn)規(guī)律,經(jīng)過歸納,猜想出結(jié)論.
(1)通過計(jì)算,比較下列各組中兩個(gè)數(shù)的大。ㄌ睢埃尽,“<”,“=”)
①12
21;、23
32;③34
43;④45
54;⑤56
65; …
(2)根據(jù)上面的歸納猜想得到的一般結(jié)論,試比較下面兩個(gè)數(shù)的大小:20062007
20072006
(3)從第(1)題的結(jié)果經(jīng)過歸納,可以猜想出nn+1與(n+1)n的大小關(guān)系是
當(dāng)n=1或2時(shí),nn+1<(n+1)n;當(dāng)n>2的整數(shù)時(shí),nn+1>(n+1)n
當(dāng)n=1或2時(shí),nn+1<(n+1)n;當(dāng)n>2的整數(shù)時(shí),nn+1>(n+1)n

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

問題:你能比較兩個(gè)數(shù)20122013和20132012的大小嗎?為了解決這個(gè)問題,我們先把它抽象成數(shù)學(xué)問題,寫出它的一般形式,即比較nn+1和(n+1)n的大。╪是自然數(shù)),然后我們從分析n=1,n=2,n=3,…這些簡(jiǎn)
單情形入手,從中發(fā)現(xiàn)規(guī)律,經(jīng)過歸納,猜想出結(jié)論.
(1)通過計(jì)算,比較下列各組中兩個(gè)數(shù)的大。
①12
21
②23
32
③34
43
④45
54
⑤56
65 
⑥67
76

(2)從第(1)題的結(jié)果經(jīng)過歸納,可以猜想出nn+1和(n+1)n(n≥3)的大小關(guān)系式是
nn+1>(n+1)n
nn+1>(n+1)n

(3)根據(jù)上面歸納猜想得到的一般結(jié)論,試比較兩個(gè)數(shù)的大。20122013
20132012(填”>”,”<”,“=”)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

問題:你能比較兩個(gè)數(shù)20122013與20132012的大小嗎為了解決這個(gè)問題,我們先把它抽象成這樣的問題:寫成它的一般形式,即比較nn+1和(n+1)n的大小(即是自然數(shù)).然后,我們分析n=1,n=2,n=3…這些簡(jiǎn)單情形入手,從而發(fā)現(xiàn)規(guī)律,經(jīng)過歸納,才想出結(jié)論.
(1)通過計(jì)算,比較下列各組中兩個(gè)數(shù)的大小
①12
21  ②23
32    ③34
43    ④45
54
⑤56
65  ⑥67
76
(2)從第(1)題的結(jié)果經(jīng)過歸納,可以猜想nn+1和(n+1)n的大小關(guān)系;
(3)根據(jù)下面歸納猜想得到的一般結(jié)論,試比較下列兩個(gè)數(shù)的大。20122013
20132012

查看答案和解析>>

同步練習(xí)冊(cè)答案