如圖,過(guò)點(diǎn)O的直線(xiàn)與雙曲線(xiàn)交于A、B兩點(diǎn),過(guò)B作BC⊥x軸于C點(diǎn),作BD⊥y軸于D點(diǎn),在x軸、y軸上分別取點(diǎn)F、E,使AE=AF=OA,設(shè)圖中兩塊陰影部分圖形的面積分別是S1,S2,則S1,S2的數(shù)量關(guān)系是( )

A.S1=S2
B.2S1=S2
C.3S1=S2
D.無(wú)法確定
【答案】分析:根據(jù)題意,易得AB兩點(diǎn)關(guān)與原點(diǎn)對(duì)稱(chēng),可設(shè)A點(diǎn)坐標(biāo)為(m,n),則B的坐標(biāo)為(-m,-n);在Rt△EOF中,由AE=AF=DA,可得A為EF中點(diǎn),分析計(jì)算可得S2,矩形OCBD中,易得S1,比較可得答案.
解答:解:設(shè)A點(diǎn)坐標(biāo)為(m,n),
過(guò)點(diǎn)O的直線(xiàn)與雙曲線(xiàn)交于A、B兩點(diǎn),則AB兩點(diǎn)關(guān)與原點(diǎn)對(duì)稱(chēng),則B的坐標(biāo)為(-m,-n);
矩形OCBD中,易得OD=-n,OC=m;則S1=-mn;
在Rt△EOF中,AE=AF=OA,故A為EF中點(diǎn),
由中位線(xiàn)的性質(zhì)可得OF=-2n,OE=2m;
則S2=OF×OE=-4mn;
故2S1=S2
故選B.
點(diǎn)評(píng):本題考查反比例函數(shù)系數(shù)k的幾何意義,過(guò)雙曲線(xiàn)上的任意一點(diǎn)分別向兩條坐標(biāo)軸作垂線(xiàn),與坐標(biāo)軸圍成的矩形面積就等于|k|.本知識(shí)點(diǎn)是中考的重要考點(diǎn),同學(xué)們應(yīng)高度關(guān)注.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,過(guò)點(diǎn)O的直線(xiàn)與雙曲線(xiàn)y=
k
x
(k≠0)
交于A、B兩點(diǎn),過(guò)B作BC⊥x軸于C點(diǎn),作BD⊥y軸于D點(diǎn),在x軸、y軸上分別取點(diǎn)F、E,使AE=AF=OA,設(shè)圖中兩塊陰影部分圖形的面積分別是S1,S2,則S1,S2的數(shù)量關(guān)系是( 。
A、S1=S2
B、2S1=S2
C、3S1=S2
D、無(wú)法確定

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖①,二次函數(shù)的拋物線(xiàn)的頂點(diǎn)坐標(biāo)C,與x軸的交于A(1,0)、B(-3,0)兩點(diǎn),與y軸交于點(diǎn)D(0,3).

(1)求這個(gè)拋物線(xiàn)的解析式;
(2)如圖②,過(guò)點(diǎn)A的直線(xiàn)與拋物線(xiàn)交于點(diǎn)E,交y軸于點(diǎn)F,其中點(diǎn)E的橫坐標(biāo)為-2,若直線(xiàn)PQ為拋物線(xiàn)的對(duì)稱(chēng)軸,點(diǎn)G為直線(xiàn)PQ上的一動(dòng)點(diǎn),則x軸上是否存在一點(diǎn)H,使D、G、H、F四點(diǎn)所圍成的四邊形周長(zhǎng)最。咳舸嬖冢蟪鲞@個(gè)最小值及點(diǎn)G、H的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由;
(3)如圖③,連接AC交y軸于M,在x軸上是否存在點(diǎn)P,使以P、C、M為頂點(diǎn)的三角形與△AOM相似?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖①,二次函數(shù)的拋物線(xiàn)的頂點(diǎn)坐標(biāo)C,與x軸的交于A(1,0)、B(-3,0)兩點(diǎn),與y軸交于點(diǎn)D(0,3)

1.求這個(gè)拋物線(xiàn)的解析式

2.如圖②,過(guò)點(diǎn)A的直線(xiàn)與拋物線(xiàn)交于點(diǎn)E,交軸于點(diǎn)F,其中點(diǎn)E的橫坐標(biāo)為-2,若直線(xiàn)為拋物線(xiàn)的對(duì)稱(chēng)軸,點(diǎn)G為直線(xiàn)上的一動(dòng)點(diǎn),則軸上是否存在一點(diǎn)H,使四點(diǎn)所圍成的四邊形周長(zhǎng)最小,若存在,求出這個(gè)最小值及點(diǎn)G、H的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由;

3.如圖③,連接AC交y軸于M,在x軸上是否存在點(diǎn)P,使以P、C、M為頂點(diǎn)的三角形與△AOM相似?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

圖①                                     圖②

圖③

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2012屆河南省中招臨考猜題(六)數(shù)學(xué)試卷(帶解析) 題型:解答題

如圖①,二次函數(shù)的拋物線(xiàn)的頂點(diǎn)坐標(biāo)C,與x軸的交于A(1,0)、B(-3,0)兩點(diǎn),與y軸交于點(diǎn)D(0,3)
【小題1】求這個(gè)拋物線(xiàn)的解析式
【小題2】如圖②,過(guò)點(diǎn)A的直線(xiàn)與拋物線(xiàn)交于點(diǎn)E,交軸于點(diǎn)F,其中點(diǎn)E的橫坐標(biāo)為-2,若直線(xiàn)為拋物線(xiàn)的對(duì)稱(chēng)軸,點(diǎn)G為直線(xiàn)上的一動(dòng)點(diǎn),則軸上是否存在一點(diǎn)H,使四點(diǎn)所圍成的四邊形周長(zhǎng)最小,若存在,求出這個(gè)最小值及點(diǎn)G、H的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由;
【小題3】如圖③,連接AC交y軸于M,在x軸上是否存在點(diǎn)P,使以P、C、M為頂點(diǎn)的三角形與△AOM相似?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

圖①                                     圖②

圖③

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2012年河南省中考數(shù)學(xué)押題試卷(三)(解析版) 題型:解答題

如圖①,二次函數(shù)的拋物線(xiàn)的頂點(diǎn)坐標(biāo)C,與x軸的交于A(1,0)、B(-3,0)兩點(diǎn),與y軸交于點(diǎn)D(0,3).

(1)求這個(gè)拋物線(xiàn)的解析式;
(2)如圖②,過(guò)點(diǎn)A的直線(xiàn)與拋物線(xiàn)交于點(diǎn)E,交y軸于點(diǎn)F,其中點(diǎn)E的橫坐標(biāo)為-2,若直線(xiàn)PQ為拋物線(xiàn)的對(duì)稱(chēng)軸,點(diǎn)G為直線(xiàn)PQ上的一動(dòng)點(diǎn),則x軸上是否存在一點(diǎn)H,使D、G、H、F四點(diǎn)所圍成的四邊形周長(zhǎng)最?若存在,求出這個(gè)最小值及點(diǎn)G、H的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由;
(3)如圖③,連接AC交y軸于M,在x軸上是否存在點(diǎn)P,使以P、C、M為頂點(diǎn)的三角形與△AOM相似?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案