【題目】下列條件中,;;;;;。能構(gòu)成直角三角形的個數(shù)有( )個。
A.3B.4C.5D.6
【答案】C
【解析】
由直角三角形的內(nèi)角和為180°,根據(jù)每一項的條件求得三角形的每一個角的度數(shù),再判斷其形狀即可.
∵,,
∴4∠A=180°,∴∠A=45°,∴∠B=45°,∠C=90°,∴能夠成直角三角形,正確;
∵,,
∴∠A+2∠A+3∠C=180°,
∴∠A=30°,∴∠B=60°,∠C=90°,∴能夠成直角三角形,正確;
設∠A=x,∠B=2x,∠C=3x,
∵,∴,
∴x=30°,∴∠C=90°,∴能夠成直角三角形,正確;
∵,,
∴3∠C+∠C+∠C=180°,∴,∴不能夠成直角三角形,錯誤;
∵,∴,
∴∠C=90°,∴能夠成直角三角形,正確;
∵,,
∴2∠C=180°,∴∠C=90°,∴能夠成直角三角形,正確;
能夠成直角三角形的個數(shù)有5個,故選C.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,AB=AC=9,BC=12,∠B=∠C,點D從B出發(fā)以每秒2厘米的速度在線段BC上從B向C方向運動,點E同時從C出發(fā)以每秒2厘米的速度在線段AC上從C向A運動,連接AD、DE.
(1)運動 秒時,AE=DC(不必說明理由)
(2)運動多少秒時,∠ADE=90°-∠BAC,并請說明理由;
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】“綠帶城中掛,人在畫中游”,張平和王亮同學周末相約騎行于“步移景異,心曠神怡”的溫江田園綠道,他們從同一地方同時騎自行車出發(fā)(騎行過程中速度保持不變),最后同時到達了同一個地方. 如圖刻畫了他們離出發(fā)點的路程(單位:米)與出發(fā)后的時間(單位:分鐘)之間的關(guān)系. 已知張平中途兩次休息時間相同,三段騎行時間也分別相同;王亮中途休息一次,兩段騎行時間相同. 張平總的休息時間比王亮的休息時間多分鐘. 請結(jié)合圖中信息解答下列問題:
(1)在這次騎行活動中,他們的騎行路程都是多少米?
(2)求出張平和王亮的騎行速度分別是多少米/分鐘?
(3)求出王亮出發(fā)后第一次追上張平的時間.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,已知兩條直線AB,CD被直線EF所截,分別交于點E,點F,EM平分∠AEF交CD于點M,且∠FEM=∠FME.
(1)直線AB與直線CD是否平行,說明你的理由;
(2)如圖2,點G是射線MD上一動點(不與點M,F重合),EH平分∠FEG交CD于點H,過點H作HN⊥EM于點N,設∠EHN=α,∠EGF=β.
①當點G在點F的右側(cè)時,若β=60°,求α的度數(shù);
②當點G在運動過程中,α和β之間有怎樣的數(shù)量關(guān)系?請寫出你的猜想,并加以證明.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】學校準備租用一批汽車,現(xiàn)有甲、乙兩種客車,甲種客車每輛載客量45人,乙種客車每輛載客量30人.已知1輛甲種客車和3輛乙種客車共需租金1240元,3輛甲種客車和2輛乙種客車共需租金1760元.求1輛甲種客車和1輛乙種客車的租金分別是多少元?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點C為線段AB上一點,△DAC、△ECB都是等邊三角形,AE、DC交于點M,DB、EC交于點N,DB、AE交于點P,連接MN,下列說法中正確的個數(shù)有( )
①MN∥AB;②∠DPM=60°;③∠DAP=∠PEC;④△ACM≌△DCN;⑤若∠DBC=30°,則∠AEB=80°
A.2個B.3個C.4個D.5個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC三個頂點的坐標分別為A(1,1),B(4,2),C(3,4).
①請畫出△ABC關(guān)于y軸對稱的△A1B1C1;
②請畫出△ABC關(guān)于x軸對稱的△A2B2C2的各點坐標;
③在x軸上求作一點P,使△PAB的周長最小,請畫出△PAB,并直接寫出點P的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某電器商場銷售每臺進價分別為200元、170元的A、B兩種型號的電風扇,下表是該型號電風扇近兩周的銷售情況:
銷售時段 | 銷售數(shù)量 | 銷售收入 | |
A種型號 | B種型號 | ||
第一周 | 3臺 | 5臺 | 1800元 |
第二周 | 4臺 | 10臺 | 3100元 |
求A、B兩種型號的電風扇的銷售單價;
若該商場準備用不多于5400元的金額再采購這兩種型號的電風扇共30臺,假設售價不變,那么商場應采用哪種采購方案,才能使得當銷售完這些風扇后,商場獲利最多?最多可獲利多少元?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖:在Rt△ABC中,∠C=90°,AC=BC,BE平分∠ABC交AC于點E,點D在BE的延長線上,AD⊥BE。
(1)求證:∠DAE+∠ABE=45°
(2)若BE=6,求AD的長。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com