(2009•廈門(mén))(1)計(jì)算:(-1)2÷+(7-3)×-(
(2)計(jì)算:[(2x-y)(2x+y)+y(y-6x)]÷2x;
(3)解方程:x2-6x+1=0.
【答案】分析:(1)將各項(xiàng)去括號(hào),然后依次進(jìn)行計(jì)算
(2)運(yùn)用平方差公式等先將式子化簡(jiǎn),然后進(jìn)行合并
(3)首先移項(xiàng),把常數(shù)項(xiàng)移到等號(hào)右邊,再在方程左右兩邊同時(shí)加上一次項(xiàng)系數(shù)一半的平方,則左邊是完全平方式,右邊是常數(shù),即可直接開(kāi)方計(jì)算.
解答:解:(1)原式=(-1)2÷+(7-3)×-(
=1×2+4×-1
=2+3-1
=4;
(2)原式=[(2x-y)(2x+y)+y(y-6x)]÷2x
=(4x2-y2+y2-6xy)÷2x
=(4x2-6xy)÷2x
=2x-3y;
(3)解:x2-6x+1=0
(x-3)2-8=0
(x-3)2=8
x-3=±2
即x1=3+2,x2=3-2
點(diǎn)評(píng):(1)(2)根據(jù)整式的運(yùn)算規(guī)則進(jìn)行計(jì)算即可.(3)中如果直接計(jì)算,運(yùn)算量較大,如果找出其中的小技巧靈活運(yùn)用完全平方和公式,這樣就能事半功倍.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:2011年江蘇省揚(yáng)州中學(xué)樹(shù)人學(xué)校中考數(shù)學(xué)一模試卷(解析版) 題型:解答題

(2009•廈門(mén))我們知道,當(dāng)一條直線與一個(gè)圓有兩個(gè)公共點(diǎn)時(shí),稱這條直線與這個(gè)圓相交.類似地,我們定義:當(dāng)一條直線與一個(gè)正方形有兩個(gè)公共點(diǎn)時(shí),稱這條直線與這個(gè)正方形相交.
如圖,在平面直角坐標(biāo)系中,正方形OABC的頂點(diǎn)為O(0,0)、A(1,0)、B(1,1)、C(0,1).
(1)判斷直線y=x+與正方形OABC是否相交,并說(shuō)明理由;
(2)設(shè)d是點(diǎn)O到直線y=-x+b的距離,若直線y=-x+b與正方形OABC相交,求d的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2009年全國(guó)中考數(shù)學(xué)試題匯編《二次函數(shù)》(06)(解析版) 題型:解答題

(2009•廈門(mén))已知二次函數(shù)y=x2-x+c.
(1)若點(diǎn)A(-1,n)、B(2,2n-1)在二次函數(shù)y=x2-x+c的圖象上,求此二次函數(shù)的最小值;
(2)若點(diǎn)D(x1,y1)、E(x2,y2)、P(m,m)(m>0)在二次函數(shù)y=x2-x+c的圖象上,且D、E兩點(diǎn)關(guān)于坐標(biāo)原點(diǎn)成中心對(duì)稱,連接OP.當(dāng)2≤OP≤2+時(shí),試判斷直線DE與拋物線y=x2-x+c+的交點(diǎn)個(gè)數(shù),并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2009年全國(guó)中考數(shù)學(xué)試題匯編《一次函數(shù)》(05)(解析版) 題型:解答題

(2009•廈門(mén))我們知道,當(dāng)一條直線與一個(gè)圓有兩個(gè)公共點(diǎn)時(shí),稱這條直線與這個(gè)圓相交.類似地,我們定義:當(dāng)一條直線與一個(gè)正方形有兩個(gè)公共點(diǎn)時(shí),稱這條直線與這個(gè)正方形相交.
如圖,在平面直角坐標(biāo)系中,正方形OABC的頂點(diǎn)為O(0,0)、A(1,0)、B(1,1)、C(0,1).
(1)判斷直線y=x+與正方形OABC是否相交,并說(shuō)明理由;
(2)設(shè)d是點(diǎn)O到直線y=-x+b的距離,若直線y=-x+b與正方形OABC相交,求d的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2009年福建省廈門(mén)市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2009•廈門(mén))已知二次函數(shù)y=x2-x+c.
(1)若點(diǎn)A(-1,n)、B(2,2n-1)在二次函數(shù)y=x2-x+c的圖象上,求此二次函數(shù)的最小值;
(2)若點(diǎn)D(x1,y1)、E(x2,y2)、P(m,m)(m>0)在二次函數(shù)y=x2-x+c的圖象上,且D、E兩點(diǎn)關(guān)于坐標(biāo)原點(diǎn)成中心對(duì)稱,連接OP.當(dāng)2≤OP≤2+時(shí),試判斷直線DE與拋物線y=x2-x+c+的交點(diǎn)個(gè)數(shù),并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2009年福建省廈門(mén)市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2009•廈門(mén))我們知道,當(dāng)一條直線與一個(gè)圓有兩個(gè)公共點(diǎn)時(shí),稱這條直線與這個(gè)圓相交.類似地,我們定義:當(dāng)一條直線與一個(gè)正方形有兩個(gè)公共點(diǎn)時(shí),稱這條直線與這個(gè)正方形相交.
如圖,在平面直角坐標(biāo)系中,正方形OABC的頂點(diǎn)為O(0,0)、A(1,0)、B(1,1)、C(0,1).
(1)判斷直線y=x+與正方形OABC是否相交,并說(shuō)明理由;
(2)設(shè)d是點(diǎn)O到直線y=-x+b的距離,若直線y=-x+b與正方形OABC相交,求d的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案