【題目】已知,如圖,在△ABC中,AD,AE分別是△ABC的高和角平分線,若∠B=40°,∠C=60°.求∠DAE的度數(shù).
【答案】10°
【解析】
試題分析:先根據(jù)三角形的內(nèi)角和定理得到∠BAC的度數(shù),再利用角平分線的性質(zhì)可求出∠EAC=∠BAC,而∠DAC=90°﹣∠C,然后利用∠DAE=∠EAC﹣∠DAC進行計算即可.
解:在△ABC中,
∵∠B=40°,∠C=60°
∴∠BAC=180°﹣∠B﹣∠C=180°﹣40°﹣60°=80°
∵AE是的角平分線,
∴∠EAC=∠BAC=×80°=40°,
∵AD是△ABC的高,
∴∠ADC=90°
∴在△ADC中,∠DAC=180°﹣∠ADC﹣∠C=180°﹣90°﹣60°=30°,
∴∠DAE=∠EAC﹣∠DAC=40°﹣30°=10°.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,是用棋子擺成的圖案,擺第1個圖案需要7枚棋子,擺第2個圖案需要19枚棋子,擺第3個圖案需要37枚棋子,按照這樣的方式擺下去,則擺第6個圖案需要 枚棋子,擺第n個圖案需要 枚棋子.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:∠MON=40°,OE平分∠MON,點A、B、C分別是射線OM、OE、ON上的動點(A、B、C不與點O 重合),連接AC交射線OE于點D.設(shè)∠OAC=x°.
(1)如圖1,若AB∥ON,則①∠ABO的度數(shù)是 ;
②當(dāng)∠BAD=∠ABD時,x= ;當(dāng)∠BAD=∠BDA時,x= .
(2)如圖2,若AB⊥OM,則是否存在這樣的x的值,使得△ADB中有兩個相等的角?若存在,求出x的值;若不存在,說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖 ,△ABC是等腰直角三角形,∠A=90o,點P、Q分別是AB、AC上的動點,且滿足BP=AQ,D是BC的中點。
(1)求證:△PDQ是等腰直角三角形;
(2)當(dāng)點P運動到什么位置時,四邊形APDQ是正方形,說明理由。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】觀察下列一組圖形中點的個數(shù),其中第1個圖中共有4個點,第2個圖中共有10個點,第3個圖中共有19個點,…按此規(guī)律第7個圖中共有點的個數(shù)是( )
A.46 B.85 C.72 D.66
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某農(nóng)舍大門是一個木制矩形欄柵,它高為2m,寬為1.5m,現(xiàn)需要在相對的頂點間用一塊木棒加固,模板的長為______________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】以下列各組線段為邊,能組成三角形的是( )
A. 2cm,5 cm,8cm B. 3 cm,3 cm,6 cm
C. 3 cm,4 cm,5 cm D. 1 cm,2cm,3 cm
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com