【題目】下列條件能判定△ABC≌△DEF的是( 。
A. AB=DE AC=DF ∠B=∠EB. AB=DE AC=DF ∠C=∠F
C. AB=DE AC=DF ∠A=∠DD. AB=DE AC=DF ∠B=∠F
科目:初中數學 來源: 題型:
【題目】如圖,一次函數的圖象與軸交于點,與軸交于點,過的中點的直線交軸于點.
(1)求,兩點的坐標及直線的函數表達式;
(2)若坐標平面內的點,能使以點,,,為頂點的四邊形為平行四邊形,請直接寫出滿足條件的點的坐標.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,已知A(0,a),B(b,0),其中a,b滿足|a﹣2|+(b﹣3)2=0.
(1)求a,b的值;
(2)如果在第二象限內有一點M(m,1),請用含m的式子表示四邊形ABOM的面積;
(3)在(2)條件下,當m=﹣ 時,在坐標軸的負半軸上是否存在點N,使得四邊形ABOM的面積與△ABN的面積相等?若存在,求出點N的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖所示,∠AGF=∠ABC,∠1+∠2=180°.
(1)試判斷BF與DE的位置關系?并說明理由;
(2)如果,DE⊥AC,∠2=150°,求∠AFG的度數.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】推理填空:
如圖,∠1+∠2=180°,∠A=∠C,試說明:AE∥BC.
解:因為∠1+∠2=180°,
所以AB∥ (同旁內角互補,兩直線平行)
所以∠A=∠EDC( ),
又因為∠A=∠C(已知)
所以∠EDC=∠C(等量代換),
所以AE∥BC( )
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,將等邊△ABC繞點C順時針旋轉120°得到△EDC,連接AD,BD.則下列結論:
①AC=AD;②BD⊥AC;③四邊形ACED是菱形.
其中正確的個數是( )
A.0 B.1 C.2 D.3
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】有這樣一個問題:探究函數的圖象與性質.小華根據學習函數的經驗,對函數的圖象與性質進行了探究.下面是小華的探究過程,請補充完整:
(1)函數的自變量x的取值范圍是___________;
(2)下表是y與x的幾組對應值.m的值為_______;
x | -2 | -1 | 1 | 2 | 3 | 4 | … | ||||
y | 0 | m | 1 | … |
(3)如圖,在平面直角坐標系xOy中,描出了以上表中各對對應值為坐標的點.根據描出的點,畫出該函數的圖象;
(4)結合函數的圖象,寫出該函數的一條性質:____________.
(5)結合函數圖象估計的解的個數為_______個.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com