<0,點P()關(guān)于原點的對稱點為,則在(    )

A.第一象限          B.第二象限      C.第三象限       D.第四象限

 

【答案】

D.

【解析】

試題分析:因為<0,所以,.即:點P在第二象限.因為點P關(guān)于原點的對稱點為,所以在第四象限.

故選D.

考點:平面直角坐標(biāo)系點的坐標(biāo).

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2012•北塘區(qū)一模)已知一個直角三角形紙片OAB,其中∠AOB=90°,OA=2,OB=4.如圖,將該紙片放置在平面直角坐標(biāo)系中,折疊該紙片,折痕與邊OB交于點C,與邊AB交于點D.

(1)若折疊后使點B與點O重合,則點C的坐標(biāo)為
(0,2)
(0,2)
;若折疊后使點B與點A重合,則點C的坐標(biāo)為
(0,
3
2
(0,
3
2
;
(2)若折疊后點B落在邊OA上的點為B′,設(shè)OB′=x,OC=y,試寫出y關(guān)于x的函數(shù)解析式,并確定y的取值范圍;
(3)若折痕經(jīng)過點O,請求出點B落在x軸上的點B′的坐標(biāo);
(4)若折疊后點B落在邊OA上的點為B′,且使DB′⊥OA,求此時點C的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•平陽縣二模)在直角坐標(biāo)系中,O為坐標(biāo)原點,點A的坐標(biāo)為(4,3),點B從點O出發(fā)以每秒一個單位的速度向點A運動,當(dāng)點B到達A點時運動停止.過點B作BC⊥x軸,垂足為C,以BC為邊在右側(cè)作正方形BCDE.連接OE交BC于點F,連接AE并延長交x軸的正半軸于點G,連接FG.設(shè)點B的運動時間為t秒(t>0).
(1)直接寫出正方形BCDE的邊長:
3
5
t
3
5
t
(用含t的代數(shù)式表示);
(2)用含t的代數(shù)式表示△OAG的面積S;
(3)當(dāng)△OBE∽△OEA時(點E與點A對應(yīng),點O與點O對應(yīng)),t的值是多少?,
(4)若M是點E關(guān)于直線FG的對稱點,是否存在t的值,使得四邊形EFMG是平行四邊形?若存在,請求出所有滿足要求的t的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

若A(-2,a)關(guān)于x軸對稱點的坐標(biāo)為B(-2,3),則a=
-3
-3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,矩形OABC的邊OA、OC都在坐標(biāo)軸上,頂點B的坐標(biāo)為(4,3),動點P從O點出發(fā)在線段OA上以每秒2個單位長度的速度向終點A運動,點D在對角線AC上,且AD=2,設(shè)運動時間為t秒.
(1)請寫出△APD的面積S關(guān)于t 的函數(shù)關(guān)系式
S=-
6
5
t+
12
5
S=-
6
5
t+
12
5
,此時t的取值范圍是
0≤t≤2
0≤t≤2

(2)若在動點P從O點出發(fā)的同時,有一動點Q從A點出發(fā),在線段AC上以每秒1個單位長度的速度向點C運動,動點P停止時,點Q也隨之停止,請問在運動過程中,當(dāng)t為何值時,CP⊥PQ?
(3)在點P的運動過程中,是否存在以A、D、P為頂點的三角形是等腰三角形?若存在,請求出此時t的值和對應(yīng)的點P的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案