(1998•杭州)如圖所示,在△ABC中,∠A=90°,以A為圓心,AB為半徑的圓分別交BC、AC于其內(nèi)部的點D、E,若BD=10,DC=6,則AC2=   
【答案】分析:根據(jù)垂徑定理和射影定理求解.
解答:解:過點A作AE⊥BD于點E.
則BF=DF=BD=5.則CF=11,BC=16.
在△ABC中,∠A=90°,AF⊥BC,
因而△ACF∽△BCA,
=,因而AC2=BC•CF=176.
點評:本題主要考查了直角三角形斜邊上的高線分直角三角形得到的小三角形與原三角形相似,相似三角形的對應(yīng)邊的比相等.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:1998年全國中考數(shù)學(xué)試題匯編《二次函數(shù)》(01)(解析版) 題型:解答題

(1998•杭州)如圖所示的拋物線是的圖象經(jīng)平移而得到的,此時拋物線過點A(1,0)和x軸上點A右側(cè)的點B,頂點為P.
(1)當(dāng)∠APB=90°時,求點P的坐標及拋物線的解析式;
(2)求上述拋物線所對應(yīng)的二次函數(shù)在0<x≤7時的最大值和最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:1998年浙江省杭州市中考數(shù)學(xué)試卷 題型:解答題

(1998•杭州)如圖所示的拋物線是的圖象經(jīng)平移而得到的,此時拋物線過點A(1,0)和x軸上點A右側(cè)的點B,頂點為P.
(1)當(dāng)∠APB=90°時,求點P的坐標及拋物線的解析式;
(2)求上述拋物線所對應(yīng)的二次函數(shù)在0<x≤7時的最大值和最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:1998年全國中考數(shù)學(xué)試題匯編《圓》(03)(解析版) 題型:解答題

(1998•杭州)如圖,已知⊙O1,與⊙O2外切于點P,過⊙O1上的一點B作⊙O1的切線交⊙O2于點C、D,直線BP交⊙O2于點A,連接DP,DA,
(1)求證:△ABD∽△ADP;
(2)若AD=,BP=3,求AB的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:1998年全國中考數(shù)學(xué)試題匯編《圓》(03)(解析版) 題型:解答題

(1998•杭州)如圖,PA、PB分別切⊙O于A、B,連接PO與⊙O相交于C,連接AC、BC,求證:AC=BC.

查看答案和解析>>

同步練習(xí)冊答案