在△ABC中,AB=AC,D為BC上一點(diǎn).由D分別作DE⊥AB于E,DF⊥AC于F;設(shè)DE=a,DF=b,且實數(shù)a,b滿足9a2-24ab+16b2=0,并有2=2566;∠A使得方程x2-x·sinA+sinA-=0有相等的兩個實數(shù)根.

(1)試求實數(shù)a,b的值;

(2)試求線段BC的長.

答案:
解析:

  (1)由條件有,解得;

  (2)又有關(guān)于x的方程的判別式△=sin2A-sinA+=(sinA-)2=0,則sinA=,而∠A為三角形的一個內(nèi)角,所以∠A1或∠A2,當(dāng)∠A=時,如圖1,△ABC為正三角形∠B=∠C=,于是分別在Rt△BDE和Rt△CDF中,有BD=,CD==2.所以BC=BD+DC=,當(dāng)∠A=時,如圖2,△ABC為等腰三角形,∠B=∠C=.同上方法,可得BC=14.所以線段BC的長應(yīng)為了或14.


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在△ABC中,AB=5,BC=3,AC=4,動點(diǎn)E(與點(diǎn)A、C不重合)在AC邊上,EF∥AB交BC于點(diǎn)F.

【小題1】當(dāng)△ECF的面積與四邊形EABF的面積相等時,求CE的長
【小題2】當(dāng)△ECF的周長與四邊形EABF的周長相等時,求CE的長
【小題3】試問在AB上是否存在點(diǎn)P,使得△EFP為等腰直角三角形?若不存在,請簡要說明理由;若存在,請求出EF的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2012屆浙江省桐鄉(xiāng)市河山鎮(zhèn)中學(xué)學(xué)校九年級第一學(xué)期期末調(diào)研測試數(shù)學(xué)卷 題型:填空題

如圖,在△ABC中,ABAC,D、E是△ABC內(nèi)兩點(diǎn),AD平分∠BAC,∠EBC=∠E=60º,若BE=6 cm,DE=2cm,則BC=______________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2013屆江蘇省無錫市江南中學(xué)九年級二模數(shù)學(xué)試卷(帶解析) 題型:解答題

如圖,在△ABC中,AB=AC=10cm,BD⊥AC于D,且BD=8cm.點(diǎn)M從點(diǎn)A出發(fā),沿AC方向勻速運(yùn)動,速度為2cm/s;同時直線PQ由點(diǎn)B出發(fā)沿BA方向勻速運(yùn)動,速度為1cm/s,運(yùn)動過程中始終保持PQ∥AC,直線PQ交AB于P,交BC于Q,連接PM,設(shè)運(yùn)動時間為t(s)(0<t<5).

(1)當(dāng)四邊形PQCM是平行四邊形時,求t的值;
(2)當(dāng)t為何值時,△PQM是等腰三角形?
(3)以PM為直徑作⊙E,在點(diǎn)P、Q整個運(yùn)動過程中,是否存在這樣的時刻t,使得⊙E與BC相切?若存在,請求出運(yùn)動時間t的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2011-2012學(xué)年江蘇省無錫市前洲中學(xué)九年級中考模擬考試數(shù)學(xué)卷 題型:解答題

(本題滿分10分)如圖1,在△ABC中,ABBC=5,AC="6." △ECD是△ABC沿BC方向平移得到的,連接AE.ACBE相交于點(diǎn)O.

(1)判斷四邊形ABCE是怎樣的四邊形,說明理由;
(2)如圖2,P是線段BC上一動點(diǎn)(圖2),(不與點(diǎn)B、C重合),連接PO并延長交線段AE于點(diǎn)QQRBD,垂足為點(diǎn)R.
①四邊形PQED的面積是否隨點(diǎn)P的運(yùn)動而發(fā)生變化?
若變化,請說明理由;若不變,求出四邊形PQED的面積;
②當(dāng)線段BP的長為何值時,△PQR與△BOC相似?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2012屆北京市燕山區(qū)九年級上學(xué)期期末考試數(shù)學(xué)卷 題型:解答題

如圖,在△ABC中,AB=AC,以AB為直徑的⊙O分別交AC、BC于點(diǎn)M、N,在AC的延長線上取點(diǎn)P,使∠CBP=∠A.

【小題1】(1)判斷直線BP與⊙O的位置關(guān)系,并證明你的結(jié)論;
【小題2】(2)若⊙O的半徑為1,tan∠CBP=0.5,求BC和BP的長.

查看答案和解析>>

同步練習(xí)冊答案