【題目】某文具店銷(xiāo)售一種進(jìn)價(jià)為每本10元的筆記本,為獲得高利潤(rùn),以不低于進(jìn)價(jià)進(jìn)行銷(xiāo)售,結(jié)果發(fā)現(xiàn),每月銷(xiāo)售量y與銷(xiāo)售單價(jià)x之間的關(guān)系可以近似地看作一次函數(shù):y=﹣5x+150,物價(jià)部門(mén)規(guī)定這種筆記本每本的銷(xiāo)售單價(jià)不得高于18元.

(1)當(dāng)每月銷(xiāo)售量為70本時(shí),獲得的利潤(rùn)為多少元;

(2)該文具店這種筆記本每月獲得利潤(rùn)為W元,求每月獲得的利潤(rùn)W元與銷(xiāo)售單價(jià)x之間的函數(shù)關(guān)系式,并寫(xiě)出自變量的取值范圍;

(3)當(dāng)銷(xiāo)售單價(jià)定為多少元時(shí),每月可獲得最大利潤(rùn),最大利潤(rùn)為多少元?

【答案】(1)420元;(2)W==﹣5x2+200x﹣1500, 10x18;(3)當(dāng)銷(xiāo)售單價(jià)定為18元時(shí),每月可獲得最大利潤(rùn),最大利潤(rùn)為480元.

【解析】

試題(1)當(dāng)時(shí),

解得

=420. 2

22

自變量的取值范圍為1

3

當(dāng)時(shí),的增大而增大,

當(dāng)時(shí),有最大值=3

答:當(dāng)銷(xiāo)售單價(jià)定為18元時(shí),每月可獲得最大利潤(rùn),最大利潤(rùn)為480.

考點(diǎn):二次函數(shù)的應(yīng)用

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在正方形網(wǎng)格中,網(wǎng)格線(xiàn)的交點(diǎn)稱(chēng)為格點(diǎn),如圖是 3×3 的正方形網(wǎng)格,已知 A,B 是兩格點(diǎn),C是不同于點(diǎn)AB的格點(diǎn),下列說(shuō)法正確的是( .

A.ΔABC是直角三角形,這樣的點(diǎn)C4個(gè)

B.ΔABC是等腰三角形,這樣的點(diǎn)C4個(gè)

C.ΔABC是等腰直角三角形,這樣的點(diǎn)C6個(gè)

D.ΔABC是等腰直角三角形,這樣的點(diǎn)C2個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知,如圖,等腰RtABC,等腰RtADE,ABAC,ADAE,ABAC,ADAE,CDAE、BE分別于點(diǎn)MF

1)求證:DAC≌△EAB.

2)求證:CDBE

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,直線(xiàn)y=-2x與直線(xiàn)ykxb相交于點(diǎn)A(a,2),并且直線(xiàn)ykxb經(jīng)過(guò)x軸上點(diǎn)B(2,0)

(1)求直線(xiàn)ykxb的解析式;

(2)求兩條直線(xiàn)與y軸圍成的三角形面積;

(3)直接寫(xiě)出不等式(k2)xb≥0的解集.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,二次函數(shù)的圖象與x軸交于A(-3,0)和B(1,0)兩點(diǎn),交y軸于點(diǎn)C(0,3),點(diǎn)C、D是二次函數(shù)圖象上的一對(duì)對(duì)稱(chēng)點(diǎn),一次函數(shù)的圖象過(guò)點(diǎn)B、D.

(1)求點(diǎn)D坐標(biāo)及二次函數(shù)的解析式;

(2)根據(jù)圖象直接寫(xiě)出使一次函數(shù)值大于二次函數(shù)值的x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,平行四邊形ABCD的周長(zhǎng)為36,對(duì)角線(xiàn)AC,BD相交于點(diǎn)O,點(diǎn)ECD的中點(diǎn),BD=12,則△DOE的周長(zhǎng)是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,∠D=∠C=90°,EDC的中點(diǎn),AE平分∠DAB,∠DEA=28°,則∠ABE的度數(shù)是__________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,AB=6,AC=10,ADBC邊上的中線(xiàn),且AD=4,延長(zhǎng)AD到點(diǎn)E,使DE=AD,連接CE

(1)求證:△AEC是直角三角形.

(2)BC邊的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在直角坐標(biāo)系中,已知點(diǎn)A0)、B01),對(duì)OAB連續(xù)作旋轉(zhuǎn)變換,依次得到三角形(1)、三角形(2)、三角形(3)、三角形(4)……則三角形(2020)的直角頂點(diǎn)的橫坐標(biāo)為__________.

查看答案和解析>>

同步練習(xí)冊(cè)答案