【題目】如圖,∠AGF=∠ABC,∠1+∠2=180°.

(1)試判斷BF與DE的位置關系,并說明理由;
(2)若BF⊥AC,∠2=150°,求∠AFG的度數(shù).

【答案】
(1)解:BF∥DE,理由如下:

∵∠AGF=∠ABC,

∴GF∥BC,

∴∠1=∠3,

∵∠1+∠2=180°,

∴∠3+∠2=180°,

∴BF∥DE;


(2)解:∵BF∥DE,BF⊥AC,

∴DE⊥AC,

∵∠1+∠2=180°,∠2=150°,

∴∠1=30°,

∴∠AFG=90°﹣30°=60°.


【解析】(1)由∠AGF=∠ABC可得GF∥BC,再由平行線的性質(zhì)可得∠1=∠3,進而可得∠3+∠2=180°,再由平行線的判定定理可證得結(jié)論;
(2)由(1)知BF∥DE,從而可得DE⊥AC,再由已知可求得∠1的度數(shù),再由∠AFG=∠AFB-∠1可求得答案.
【考點精析】利用平行線的判定與性質(zhì)對題目進行判斷即可得到答案,需要熟知由角的相等或互補(數(shù)量關系)的條件,得到兩條直線平行(位置關系)這是平行線的判定;由平行線(位置關系)得到有關角相等或互補(數(shù)量關系)的結(jié)論是平行線的性質(zhì).

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】某職業(yè)高中機電班共有學生42人,其中男生人數(shù)比女生人數(shù)的2倍少3人.

(1)該班男生和女生各有多少人?

(2)某工廠決定到該班招錄30名學生,經(jīng)測試,該班男、女生每天能加工的零件數(shù)分別為50個和45個,為保證他們每天加工的零件總數(shù)不少于1460個,那么至少要招錄多少名男學生?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】直線y=x-1上的點在x軸上方時對應的自變量的范圍是( )

A.x>1 B.x1 C.x<1 D.x1

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】用適當?shù)姆椒ń夥匠蹋?/span>

12x2x150

2)(2x+1232x+1

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,分別以RtABC的直角邊AC及斜邊AB向外作等邊ACD及等邊ABE,已知ABC=60°,EFAB,垂足為F,連接DF.

(1)求證:ABC≌△EAF;

(2)試判斷四邊形EFDA的形狀,并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在一次綜合實踐活動中,小明要測某地一座古塔AE的高度.如圖,已知塔基頂端B(和A、E共線)與地面C處固定的繩索的長BC為80m.她先測得∠BCA=35°,然后從C點沿AC方向走30m到達D點,又測得塔頂E的仰角為50°,求塔高AE.(人的高度忽略不計,結(jié)果用含非特殊角的三角函數(shù)表示)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,OM是∠AOC的平分線,ON是∠BOC的平分線.

(1)如圖1,當∠AOB是直角,∠BOC=60°時,∠MON的度數(shù)是多少?
(2)如圖2,當∠AOB=α,∠BOC=60°時,猜想∠MON與α的數(shù)量關系;
(3)如圖3,當∠AOB=α,∠BOC=β時,猜想∠MON與α、β有數(shù)量關系嗎?如果有,指出結(jié)論并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,直線AB,CD相交于點O,OA平分∠EOC.

(1)若∠EOC=70°,求∠BOD的度數(shù);
(2)若∠EOC:∠EOD=2:3,求∠BOD的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知一個正數(shù)的兩個平方根分別為3a﹣1和﹣5﹣a,則這個正數(shù)的立方根是(  )

A. ﹣2 B. 2 C. 3 D. 4

查看答案和解析>>

同步練習冊答案