精英家教網 > 初中數學 > 題目詳情

如圖1,Rt△ABC中,∠ACB=90°,AB=5,BC=3,點D在邊AB的延長線上,BD=3,過點D作DE⊥AB,與邊AC的延長線相交于點E,以DE為直徑作⊙O交AE于點F.

(1)求⊙O的半徑及圓心O到弦EF的距離;

(2)連接CD,交⊙O于點G(如圖2).求證:點G是CD的中點.

 

【答案】

(1)3。2.4。

(2)證明見解析

【解析】

試題分析:(1)根據勾股定理求出AC,證△ACB∽△ADE,得出,代入求出DE=6,AE=10,過O作OQ⊥EF于Q,證△EQO∽△EDA,代入求出OQ即可。

(2)連接EG,求出EG⊥CD,求出CF=ED,根據等腰三角形三線合一的性質求出即可。

解:(1)∵∠ACB=90°,AB=5,BC=3,∴由勾股定理得:AC=4。

∵AB=5,BD=3,∴AD=8。

∵∠ACB=90°,DE⊥AD,∴∠ACB=∠ADE。

∵∠A=∠A,∴△ACB∽△ADE。

,即!郉E=6,AE=10。

∴⊙O的半徑為3。

過O作OQ⊥EF于Q,則∠EQO=∠ADE=90°,

∵∠QEO=∠AED,∴△EQO∽△EDA。

,即。

∴OQ=2.4,即圓心O到弦EF的距離是2.4。

(2)證明:連接EG,

∵AE=10,AC=4,∴CE=6!郈E=DE=6。

∵DE為直徑,∴∠EGD=90°。

∴EG⊥CD。

∴點G為CD的中點。

 

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

(2012•和平區(qū)二模)如圖,在Rt△ABC中,∠BAC=90°,AB=6,AM為∠BAC的平分線,CM=2BM.下列結論:
①tan∠MAC=
2
2
;②點M到AB的距離是4;③
AC
CM
=
BC
CA
;④∠B=2∠C;⑤
CM
AB
=
2
,
其中不正確結論的序號是
①③④⑤
①③④⑤

查看答案和解析>>

科目:初中數學 來源: 題型:

(2013•遵義)如圖,在Rt△ABC中,∠ACB=90°,AC=BC=1,E為BC邊上的一點,以A為圓心,AE為半徑的圓弧交AB于點D,交AC的延長于點F,若圖中兩個陰影部分的面積相等,則AF的長為
2
π
π
2
π
π
(結果保留根號).

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖,在Rt△ABC中,∠C=90°,∠A=30°,AB+BC=9cm,則AB的長為(  )

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖,在Rt△ABC中,∠C=90°,∠ABC的平分線BD交AC于點D,DE⊥DB交AB于點E,設⊙O是△BDE的外接圓.
(1)求證:AC是⊙O的切線;
(2)若DE=2,BD=4,求AE的長.

查看答案和解析>>

科目:初中數學 來源: 題型:

(2013•嘉定區(qū)二模)如圖,在Rt△ABC中,∠ACB=90°,點D在AC邊上,且BC2=CD•CA.
(1)求證:∠A=∠CBD;
(2)當∠A=α,BC=2時,求AD的長(用含α的銳角三角比表示).

查看答案和解析>>

同步練習冊答案