【題目】如圖,在平面直角坐標(biāo)系中,已知點(diǎn)A(5,3),點(diǎn)B(-3,3),過點(diǎn)A的直線(m為常數(shù))與直線x=1交于點(diǎn)P,與x軸交于點(diǎn)C,直線BP與x軸交于點(diǎn)D。
(1)求點(diǎn)P的坐標(biāo);
(2)求直線BP的解析式,并直接寫出△PCD與△PAB的面積比;
(3)若反比例函數(shù)(k為常數(shù)且k≠0)的圖象與線段BD有公共點(diǎn)時(shí),請(qǐng)直接寫出k的最大值或最小值。
【答案】(1)P(1,1); (2) ;(3)當(dāng)k<0時(shí),最小值為-9;當(dāng)k>0時(shí),最大值為
【解析】試題分析:把點(diǎn)坐標(biāo)代入一次函數(shù),求得的值,進(jìn)而求得點(diǎn)的坐標(biāo).
用待定系數(shù)法即可求得直線的解析式,直接計(jì)算面積即可求出它們的比值.
分成和兩種情況進(jìn)行討論.
試題解析:(1)∵過點(diǎn)A(5,3),
解得:
∴y=,
當(dāng)時(shí),∴,
∴
(2)設(shè)直線BP的解析式為y=ax+b,
根據(jù)題意,得
解得:
∴直線BP的解析式為,
點(diǎn)
(3)當(dāng)時(shí),經(jīng)過點(diǎn)時(shí),有最值為-9;
當(dāng)時(shí),聯(lián)立方程 整理得,
解得:
即最大值為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某化工車間發(fā)生有害氣體泄漏,自泄漏開始到完全控制利用了40min,之后將對(duì)泄漏有害氣體進(jìn)行清理,線段DE表示氣體泄漏時(shí)車間內(nèi)危險(xiǎn)檢測(cè)表顯示數(shù)據(jù)y與時(shí)間x(min)之間的函數(shù)關(guān)系(0≤x≤40),反比例函數(shù)y=對(duì)應(yīng)曲線EF表示氣體泄漏控制之后車間危險(xiǎn)檢測(cè)表顯示數(shù)據(jù)y與時(shí)間x(min)之間的函數(shù)關(guān)系(40≤x≤?).根據(jù)圖象解答下列問題:
(1)危險(xiǎn)檢測(cè)表在氣體泄漏之初顯示的數(shù)據(jù)是 ;
(2)求反比例函數(shù)y=的表達(dá)式,并確定車間內(nèi)危險(xiǎn)檢測(cè)表恢復(fù)到氣體泄漏之初數(shù)據(jù)時(shí)對(duì)應(yīng)x的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀下面文字后,解答問題
有這樣一道題目:“已知:二次函數(shù)的圖象經(jīng)過點(diǎn)(1,0)_________,
求證:這個(gè)二次函數(shù)圖象關(guān)于直線對(duì)稱”
題目中的橫線部分是一段被墨水污染了無法辨認(rèn)的文字.
根據(jù)現(xiàn)有信息,題目中二次函數(shù)圖象不具有的性質(zhì)是( )
A. 過點(diǎn)(3,0) B. 頂點(diǎn)是(2,-2)
C. 在X軸上截得的線段長是2 D. 與Y軸交點(diǎn)是(0,3)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC是一個(gè)邊長為2的等邊三角形,AD0⊥BC,垂足為點(diǎn)D0.過點(diǎn)D0作D0D1⊥AB,垂足為點(diǎn)D1;再過點(diǎn)D1作D1D2⊥AD0,垂足為點(diǎn)D2;又過點(diǎn)D2作D2D3⊥AB,垂足為點(diǎn)D3;……;這樣一直作下去,得到一組線段:D0D1,D1D2,D2D3,……,則線段D1D2的長為______,線段Dn-1Dn的長為______(n為正整數(shù)).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某社區(qū)超市第一次用6000元購進(jìn)甲、乙兩種商品,其中乙商品的件數(shù)比甲商品件數(shù)的倍多15件,甲、乙兩種商品的進(jìn)價(jià)和售價(jià)如下表:(注:獲利=售價(jià)﹣進(jìn)價(jià))
甲 | 乙 | |
進(jìn)價(jià)(元/件) | 22 | 30 |
售價(jià)(元/件) | 29 | 40 |
(1)該超市購進(jìn)甲、乙兩種商品各多少件?
(2)該超市將第一次購進(jìn)的甲、乙兩種商品全部賣完后一共可獲得多少利潤?
(3)該超市第二次以第一次的進(jìn)價(jià)又購進(jìn)甲、乙兩種商品,其中甲商品的件數(shù)不變,乙商品的件數(shù)是第一次的3倍;甲商品按原價(jià)銷售,乙商品打折銷售,第二次兩種商品都銷售完以后獲得的總利潤比第一次獲得的總利潤多180元,求第二次乙商品是按原價(jià)打幾折銷售?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,數(shù)軸上A,B兩點(diǎn)表示的數(shù)分別為a,b,且a,b滿足|a+5|+(b﹣10)2=0.
(1)則a= ,b= ;
(2)點(diǎn)P,Q分別從A,B兩點(diǎn)同時(shí)向右運(yùn)動(dòng),點(diǎn)P的運(yùn)動(dòng)速度為每秒5個(gè)單位長度,點(diǎn)Q的運(yùn)動(dòng)速度為每秒4個(gè)單位長度,運(yùn)動(dòng)時(shí)間為t(秒).
①當(dāng)t=2時(shí),求P,Q兩點(diǎn)之間的距離.
②在P,Q的運(yùn)動(dòng)過程中,共有多長時(shí)間P,Q兩點(diǎn)間的距離不超過3個(gè)單位長度?
③當(dāng)t≤15時(shí),在點(diǎn)P,Q的運(yùn)動(dòng)過程中,等式AP+mPQ=75(m為常數(shù))始終成立,求m的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為弘揚(yáng)中華傳統(tǒng)文化,某校舉辦了學(xué)生“國學(xué)經(jīng)典大賽”.比賽項(xiàng)目為:.唐詩;.宋詞;.論語;.三字經(jīng).比賽形式分“單人組”和“雙人組”.
(1)小麗參加“單人組”,她從中隨機(jī)抽取一個(gè)比賽項(xiàng)目,恰好抽中“三字經(jīng)”的概率是多少?
(2)小紅和小明組成一個(gè)小組參加“雙人組”比賽,比賽規(guī)則是:同一小組的兩名隊(duì)員的比賽項(xiàng)目不能相同,且每人只能隨機(jī)抽取一次,則小紅和小明都沒有抽到“論語”的概率是多少?請(qǐng)用畫樹狀圖或列表的方法進(jìn)行說明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,Rt△ABC中,∠C=90°,以斜邊AB為邊向外作正方形ABDE,且正方形對(duì)角線交于點(diǎn)O,連接OC,已知AC=,OC=,則另一直角邊BC的長為__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,,,過點(diǎn)D作,交的平分線于點(diǎn)E,連接BE,延長DE交BC于F,.
(1)求證:.
(2)將繞點(diǎn)C順時(shí)針旋轉(zhuǎn)得到,連接EG.求證:CD垂直平分EG.
(3)延長BE交CD于點(diǎn)P,求證:P是CD的中點(diǎn)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com