【題目】如圖,在等邊△ABC中,AC=7,點(diǎn)P在△ABC內(nèi)部,且∠APC=90°,∠BPC=120°,則△APC的面積為___________
【答案】
【解析】將△APB繞點(diǎn)A按逆時(shí)針?lè)较蛐D(zhuǎn)60°,得到△AP′C′,只要證明∠PP′C=90°,利用勾股定理即可解決問(wèn)題;
解:如圖所示,將△APB繞點(diǎn)A按逆時(shí)針?lè)较蛐D(zhuǎn)60°,得到△AP′C′,
∴△APP′是等邊三角形,∠AP′C=∠APB=360°90°120°=150°,
∴PP′=AP,∠AP′P=∠APP′=60°,
∴∠PP′C=90°,∠P′PC=30°,
∴PP′=PC,即AP=PC,
∵∠APC=90°,
∴AP2+PC2=AC2,即(PC)2+PC2=72,
∴PC=,
∴AP=,
∴S△APC=APPC=.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】我們給出如下定義:若一個(gè)四邊形中存在相鄰兩邊的平方和等于一條對(duì)角線(xiàn)的平方,則稱(chēng)這個(gè)四邊形為勾股四邊形,這兩條相鄰的邊稱(chēng)為這個(gè)四邊形的勾股邊.
(1)寫(xiě)出你所學(xué)過(guò)的特殊四邊形中是勾股四邊形的一種圖形的名稱(chēng) ;
(2)如圖 1,已知格點(diǎn)(小正方形的頂點(diǎn))O(0,0),A(3,0),B(0,4),請(qǐng)你直接寫(xiě)出所有以格點(diǎn)為頂點(diǎn),OA、OB 為勾股邊且有對(duì)角線(xiàn)相等的勾股四邊形 OAMB 的頂點(diǎn)M 的坐標(biāo): ;
(3)如圖 2,將△ABC 繞頂點(diǎn) B 按順時(shí)針?lè)较蛐D(zhuǎn) 60°,得到△DBE,連接 AD、DC,∠DCB=30°.求證: DC2 BC2 AC2 ,即四邊形 ABCD 是勾股四邊形;
(4)若將圖 2 中△ABC 繞頂點(diǎn) B 按順時(shí)針?lè)较蛐D(zhuǎn) a 度(0°<a <90°),得到△DBE,連接 AD、DC,則當(dāng)∠DCB= °時(shí),四邊形BECD 是勾股四邊形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:如圖,點(diǎn)A,B,C,D的坐標(biāo)分別是(1,7),(1,1),(4,1),(6,1).若以C,D,E(E在格點(diǎn)上)為頂點(diǎn)的三角形與△ABC相似,則點(diǎn)E的坐標(biāo)不可能是( )
A. (6,0) B. (4,2) C. (6,5) D. (6,3)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】 如圖,AB是⊙O的直徑,P為AB延長(zhǎng)線(xiàn)上的一個(gè)動(dòng)點(diǎn),過(guò)點(diǎn)P作⊙O的切線(xiàn),切點(diǎn)為C,連接AC,BC,作∠APC的平分線(xiàn)交AC于點(diǎn)D.
下列結(jié)論正確的是 (寫(xiě)出所有正確結(jié)論的序號(hào))
①△CPD∽△DPA;
②若∠A=30°,則PC=BC;
③若∠CPA=30°,則PB=OB;
④無(wú)論點(diǎn)P在AB延長(zhǎng)線(xiàn)上的位置如何變化,∠CDP為定值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知: A 0,1 , B 2, 0 , C 4, 3 .
(1)求△ABC 的面積;
(2)設(shè)點(diǎn) P 在坐標(biāo)軸上,且△ABC 和△ABP 的面積相等,直接寫(xiě)出 P 的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知直線(xiàn)l//AB,l與AB之間的距離為2.C、D是直線(xiàn)l上兩個(gè)動(dòng)點(diǎn)(點(diǎn)C在D點(diǎn)的左側(cè)),且AB=CD=5.連接AC、BC、BD,將△ABC沿BC折疊得到△A′BC.下列說(shuō)法:①四邊形ABDC的面積始終為10;②當(dāng)A′與D重合時(shí),四邊形ABDC是菱形;③當(dāng)A′與D不重合時(shí),連接A′、D,則∠CA′D+∠BC A′=180°;④若以A′、C、B、D為頂點(diǎn)的四邊形為矩形,則此矩形相鄰兩邊之和為3或7.其中正確的是( )
A. ①②③④B. ①③④C. ①②④D. ①②③
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某個(gè)體經(jīng)營(yíng)戶(hù)了解到有一種盒裝商品能暢銷(xiāo)市場(chǎng),就用4萬(wàn)元購(gòu)進(jìn)這種商品,面市后果然供不應(yīng)求,他又用8.8萬(wàn)元購(gòu)進(jìn)了第二批這種商品,所購(gòu)數(shù)量是第一批購(gòu)進(jìn)量的2倍,但每盒單價(jià)漲了4元,他在銷(xiāo)售這種盒裝商品時(shí)每盒定價(jià)都是56元,最后剩下的150盒按八折銷(xiāo)售,很快售完,在這兩筆生意中,這位個(gè)體經(jīng)營(yíng)戶(hù)共贏利多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC內(nèi)接于⊙O,AB=AC,過(guò)點(diǎn)A作AD⊥AB交⊙O于點(diǎn)D,交BC于點(diǎn)E,點(diǎn)F在DA的延長(zhǎng)線(xiàn)上,且∠ABF=∠C .
(1)求證:BF是⊙O的切線(xiàn);
(2)若AD=4,cos∠ABF=,求BC的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,△ABC的三個(gè)頂點(diǎn)坐標(biāo)分別為A(-2,1),B(-1,4),C(-3,2).
(1)畫(huà)出△ABC關(guān)于點(diǎn)B成中心對(duì)稱(chēng)的圖形△A1BC1;
(2)以原點(diǎn)O為位似中心,相似比為1∶2,在y軸的左側(cè),畫(huà)出△ABC放大后的圖形△A2B2C2,并直接寫(xiě)出點(diǎn)C2的坐標(biāo).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com