為了落實國務院的指示精神,某地方政府出臺了一系列“三農”優(yōu)惠政策,使農民收入大幅度增加.某農戶生產經銷一種農產品,已知這種產品的成本價為每千克20元,市場調查發(fā)現(xiàn),該產品每天的銷售量y(千克)與銷售價x(元/千克)有如下關系:y=﹣2x+80.設這種產品每天的銷售利潤為w元.
(1)求w與x之間的函數(shù)關系式.
(2)該產品銷售價定為每千克多少元時,每天的銷售利潤最大?最大利潤是多少元?
(3)如果物價部門規(guī)定這種產品的銷售價不高于每千克28元,該農戶想要每天獲得150元的銷售利潤,銷售價應定為每千克多少元?
解:(1)由題意得:,
∴w與x的函數(shù)關系式為:。
(2),
∵﹣2<0,∴當x=30時,w有最大值.w最大值為200。
答:該產品銷售價定為每千克30元時,每天銷售利潤最大,最大銷售利潤200元。
(3)當w=150時,可得方程﹣2(x﹣30)2+200=150,解得x1=25,x2=35。
∵35>28,∴x2=35不符合題意,應舍去。
答:該農戶想要每天獲得150元的銷售利潤,銷售價應定為每千克25元。
解析試題分析:(1)根據銷售額=銷售量×銷售價單x,列出函數(shù)關系式。
(2)用配方法將(2)的函數(shù)關系式變形,利用二次函數(shù)的性質求最大值。
(3)把y=150代入(2)的函數(shù)關系式中,解一元二次方程求x,根據x的取值范圍求x的值。
科目:初中數(shù)學 來源: 題型:解答題
如圖,在平面直角坐標系中,二次函數(shù)的圖象與x軸交于A、B兩點,B點的坐標為(3,0),與y軸交于點C(0,-3),點P是直線BC下方拋物線上的一個動點.
(1)求二次函數(shù)解析式;
(2)連接PO,PC,并將△POC沿y軸對折,得到四邊形.是否存在點P,使四邊形為菱形?若存在,求出此時點P的坐標;若不存在,請說明理由;
(3)當點P運動到什么位置時,四邊形ABPC的面積最大?求出此時P點的坐標和四邊形ABPC的最大面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
如圖,直線與坐標軸分別交于點A、B,與直線y=x交于點C.在線段OA上,動點Q以每秒1個單位長度的速度從點O出發(fā)向點A做勻速運動,同時動點P從點A出發(fā)向點O做勻速運動,當點P、Q其中一點停止運動時,另一點也停止運動.分別過點P、Q作x軸的垂線,交直線AB、OC于點E、F,連接EF.若運動時間為t秒,在運動過程中四邊形PEFQ總為矩形(點P、Q重合除外).
(1)求點P運動的速度是多少?
(2)當t為多少秒時,矩形PEFQ為正方形?
(3)當t為多少秒時,矩形PEFQ的面積S最大?并求出最大值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
如圖,在平面直角坐標系中,A、B為x軸上兩點,C、D為y軸上的兩點,經
過點A、C、B的拋物線的一部分C1與經過點A、D、B的拋物線的一部分C2組合成一條封閉曲線,我們把這條封
閉曲線稱為“蛋線”.已知點C的坐標為(0,),點M是拋物線C2:(<0)的頂點.
(1)求A、B兩點的坐標;
(2)“蛋線”在第四象限上是否存在一點P,使得△PBC的面積最大?若存在,求出△PBC面積的最大值;若不存在,請說明理由;
(3)當△BDM為直角三角形時,求的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
一汽車租賃公司擁有某種型號的汽車100輛.公司在經營中發(fā)現(xiàn)每輛車的月租金x(元)與每月租出的車輛數(shù)(y)有如下關系:
x | 3000 | 3200 | 3500 | 4000 |
y | 100 | 96 | 90 | 80 |
租出的車輛數(shù) | | 未租出的車輛數(shù) | |
租出每輛車的月收益 | | 所有未租出的車輛每月的維護費 | |
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
如圖,已知拋物線y=ax2+bx+3與x軸交于A、B兩點,過點A的直線l與拋物線交于點C,其中A點的坐標是(1,0),C點坐標是(4,3).
(1)求拋物線的解析式;
(2)在(1)中拋物線的對稱軸上是否存在點D,使△BCD的周長最。咳舸嬖,求出點D的坐標,若不存在,請說明理由;
(3)若點E是(1)中拋物線上的一個動點,且位于直線AC的下方,試求△ACE的最大面積及E點的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
如圖,已知以E(3,0)為圓心,以5為半徑的⊙E與x軸交于A,B兩點,與y軸交于C點,拋物線經過A,B,C三點,頂點為F.
(1)求A,B,C三點的坐標;
(2)求拋物線的解析式及頂點F的坐標;
(3)已知M為拋物線上一動點(不與C點重合),試探究:
①使得以A,B,M為頂點的三角形面積與△ABC的面積相等,求所有符合條件的點M的坐標;
②若探究①中的M點位于第四象限,連接M點與拋物線頂點F,試判斷直線MF與⊙E的位置關系,并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
如圖,四邊形ABCD是菱形,對角線AC與BD交于點O,且AC=80,BD=60.動點M、N分別以每秒1個單位的速度從點A、D同時出發(fā),分別沿A→O→D和D→A運動,當點N到達點A時,M、N同時停止運動.設運動時間為t秒.
(1)求菱形ABCD的周長;
(2)記△DMN的面積為S,求S關于t的解析式,并求S的最大值;
(3)當t=30秒時,在線段OD的垂直平分線上是否存在點P,使得∠DPO=∠DON?若存在,這樣的點P有幾個?并求出點P到線段OD的距離;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com