在平面直角坐標系中,已知函數(shù)y1=2x和函數(shù)y2=-x+6,不論x取何值,y0都取y1與y2二者之中的較小值.
(1)求y0關于x的函數(shù)關系式;
(2)現(xiàn)有二次函數(shù)y=x2-8x+c,若函數(shù)y0和y都隨著x的增大而減小,求自變量x的取值范圍;
(3)在(2)的結論下,若函數(shù)y0和y的圖象有且只有一個公共點,求c的取值范圍.

解:(1)聯(lián)立,
解得,
所以,y0=;
(說明:兩個自變量取值范圍都含有等號或其中一個含等號均不扣分,都沒等號扣1分)

(2)∵對函數(shù)y0,當y0隨x的增大而減小,
∴y0=-x+6(x≥2),
又∵函數(shù)y的對稱軸為直線x=4,且a=1>0,
∴當x≤4時,y隨x的增大而減小,
∴2≤x≤4;

(3)①若函數(shù)y=x2-8x+c與y0=-x+6只有一個交點,且交點在2<x<4范圍內(nèi),
則x2-8x+c=-x+6,
即x2-7x+(c-6)=0,
△=73-4c=0,
解得c=18
此時x1=x2=,符合2<x<4,
所以,c=18,
②若函數(shù)y=x2-8x+c與y0=-x+6有兩個交點,其中一個在2≤x≤4范圍內(nèi),另一個交點在2≤x≤4范圍外,
則△=73-4c>0,
解得c<18
方法一:對于y0=-x+6,當x=2時,y0=4,
當x=4時,y0=2,
又∵當2≤x≤4時,y隨x的增大而減小,
若y=x2-8x+c與y0=-x+6在2<x<4內(nèi)有一個交點,
則當x=2時,y>y0,當x=4時,y<y0
即當x=2時,y≥4;當x=4,時y≤2,
也就是,
解得16<c<18,
由c<18,得16<c<18…..…
方法二:聯(lián)立消去y得,
x2-7x+(c-6)=0,
解得x=,
由函數(shù)y=x2-8x+c與y0=-x+6的一個交點在2≤x≤4范圍內(nèi),另一個交點在2≤x≤4范圍外,
可得:
解第一個不等式組,可得即無解,
解第二個不等式組,可得即16<c<18,
由c<18,得16<c<18.
綜上所述,c的取值范圍是:c=18或16<c<18.
分析:(1)聯(lián)立兩函數(shù)解析式求出交點坐標,然后根據(jù)一次函數(shù)的增減性解答;
(2)根據(jù)一次函數(shù)的增減性判斷出x≥2,再根據(jù)二次函數(shù)解析式求出對稱軸,然后根據(jù)二次函數(shù)的增減性可得x≤4,從而得解;
(3)①若函數(shù)y=x2-8x+c與y0=-x+6只有一個交點,聯(lián)立兩函數(shù)解析式整理得到關于x的一元二次方程,利用根的判別式△=0求出c的值,然后求出x的值,若在x的取值范圍內(nèi),則符合;②若函數(shù)y=x2-8x+c與y0=-x+6有兩個交點,先利用根的判別式求出c的取值范圍,方法一:先求出x=2與x=4時的函數(shù)值,然后利用一個解在x的范圍內(nèi),另一個解不在x的范圍內(nèi)列出不等式組求解即可;方法二:聯(lián)立兩函數(shù)解析式整理得到關于x的一元二次方程,并求出方程的解,再根據(jù)兩個解一個在x的范圍內(nèi),另一個解不在x的范圍內(nèi)列出不等式組求解即可.
點評:本題是二次函數(shù)綜合題型,主要涉及聯(lián)立兩函數(shù)解析式求交點坐標,一次函數(shù)與二次函數(shù)的增減性,以及交點的個數(shù)的討論求解,(3)難點在于要分只有一個交點且交點橫坐標在x的取值范圍內(nèi),有兩個交點,但只有一個交點的橫坐標在x的取值范圍內(nèi),而另一交點在范圍外,比較復雜且難度較大.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

28、在平面直角坐標系中,點P到x軸的距離為8,到y(tǒng)軸的距離為6,且點P在第二象限,則點P坐標為
(-6,8)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

10、在平面直角坐標系中,點P1(a,-3)與點P2(4,b)關于y軸對稱,則a+b=
-7

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

在平面直角坐標系中,有A(2,3)、B(3,2)兩點.
(1)請再添加一點C,求出圖象經(jīng)過A、B、C三點的函數(shù)關系式.
(2)反思第(1)小問,考慮有沒有更簡捷的解題策略?請說出你的理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在平面直角坐標系中,開口向下的拋物線與x軸交于A、B兩點,D是拋物線的頂點,O為精英家教網(wǎng)坐標原點.A、B兩點的橫坐標分別是方程x2-4x-12=0的兩根,且cos∠DAB=
2
2

(1)求拋物線的函數(shù)解析式;
(2)作AC⊥AD,AC交拋物線于點C,求點C的坐標及直線AC的函數(shù)解析式;
(3)在(2)的條件下,在x軸上方的拋物線上是否存在一點P,使△APC的面積最大?如果存在,請求出點P的坐標和△APC的最大面積;如果不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

18、在平面直角坐標系中,把一個圖形先繞著原點順時針旋轉(zhuǎn)的角度為θ,再以原點為位似中心,相似比為k得到一個新的圖形,我們把這個過程記為【θ,k】變換.例如,把圖中的△ABC先繞著原點O順時針旋轉(zhuǎn)的角度為90°,再以原點為位似中心,相似比為2得到一個新的圖形△A1B1C1,可以把這個過程記為【90°,2】變換.
(1)在圖中畫出所有符合要求的△A1B1C1;
(2)若△OMN的頂點坐標分別為O(0,0)、M(2,4)、N(6,2),把△OMN經(jīng)過【θ,k】變換后得到△O′M′N′,若點M的對應點M′的坐標為(-1,-2),則θ=
0°(或360°的整數(shù)倍)
,k=
2

查看答案和解析>>

同步練習冊答案