【題目】在等邊△ABC外側(cè)作直線AP,點(diǎn)B關(guān)于直線AP的對稱點(diǎn)為D,連接BD,CD,其中CD交直線AP于點(diǎn)E.
(1)依題意補(bǔ)全圖1;
(2)若∠PAB=30°,求∠ACE的度數(shù);
(3)如圖2,若60°<∠PAB<120°,判斷由線段AB,CE,ED可以構(gòu)成一個(gè)含有多少度角的三角形,并證明.
【答案】
(1)
解:所作圖形如圖1所示:
(2)
解:連接AD,如圖1.
∵點(diǎn)D與點(diǎn)B關(guān)于直線AP對稱,
∴AD=AB,∠DAP=∠BAP=30°,
∵AB=AC,∠BAC=60°,
∴AD=AC,∠DAC=120°,
∴2∠ACE+60°+60°=180°,
∴∠ACE=30°
(3)
解:線段AB,CE,ED可以構(gòu)成一個(gè)含有60°角的三角形.
證明:連接AD,EB,如圖2.
∵點(diǎn)D與點(diǎn)B關(guān)于直線AP對稱,
∴AD=AB,DE=BE,
∴∠EDA=∠EBA,
∵AB=AC,AB=AD,
∴AD=AC,
∴∠ADE=∠ACE,
∴∠ABE=∠ACE.
設(shè)AC,BE交于點(diǎn)F,
又∵∠AFB=∠CFE,
∴∠BAC=∠BEC=60°,
∴線段AB,CE,ED可以構(gòu)成一個(gè)含有60°角的三角形.
【解析】(1)根據(jù)題意作出圖形;(2)根據(jù)題意可得∠DAP=∠BAP=30°,然后根據(jù)AB=AC,∠BAC=60°,得出AD=AC,∠DAC=120°,最后根據(jù)三角形的內(nèi)角和公式求解;(3)由線段AB,CE,ED可以構(gòu)成一個(gè)含有60度角的三角形,連接AD,EB,根據(jù)對稱可得∠EDA=∠EBA,然后證得AD=AC,最后即可得出∠BAC=∠BEC=60°.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列事件中,屬于必然事件的是( )
A.擲一枚硬幣,正面朝下
B.三角形兩邊之和大于第三邊
C.一個(gè)三角形三個(gè)內(nèi)角的和小于180°
D.在一個(gè)沒有紅球的盒子里,摸到紅球
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明想了解全校3000名同學(xué)對新聞、體育、音樂、娛樂、戲曲五類電視節(jié)目的喜愛況,從中抽取了一部分同學(xué)進(jìn)行了一次抽樣調(diào)查,利用所得數(shù)據(jù)繪制成下面的統(tǒng)計(jì)圖:根據(jù)圖中所給信息,全校喜歡娛樂類節(jié)目的學(xué)生大約有( )人.
A.1080
B.900
C.600
D.108
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列說法中,正確的個(gè)數(shù)為:①在等圓中,等弦對等弧;②直徑是圓的對稱軸;③平分弦的直徑垂直于這條弦;④弦的中垂線一定經(jīng)過圓心.( )
A.0B.1C.2D.3
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在菱形ABCD中,AB=2,∠DAB=60°,點(diǎn)E是AD邊的中點(diǎn).點(diǎn)M是AB邊上一動(dòng)點(diǎn)(不與點(diǎn)A重合),延長ME交射線CD于點(diǎn)N,連接MD、AN.
(1)求證:四邊形AMDN是平行四邊形;
(2)填空:①當(dāng)AM的值為 時(shí),四邊形AMDN是矩形;
②當(dāng)AM的值為 時(shí),四邊形AMDN是菱形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】任意寫出一個(gè)偶數(shù)和一個(gè)奇數(shù),兩數(shù)之和是奇數(shù)的概率是 , 兩數(shù)之和是偶數(shù)的概率是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某同學(xué)要證明命題“平行四邊形的對邊相等.”是正確的,他畫出了圖形,并寫出了如下已知和不完整的求證.
已知:如圖,四邊形ABCD是平行四邊形.
求證:AB=CD,
(1)補(bǔ)全求證部分;
(2)請你寫出證明過程.
證明: .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com