計(jì)算:
(1)-3(x2-xy)-x(-2y+2x)
(2)(x+2)(y+3)-(x+1)(y-2)
(3)(-2m2n)3•mn+(-7m7n12)0-2(mn)-4•m11•n8
(4)(3mn+1)(3mn-1)-(3mn-2)2
(5)(a+b+c)(a+b-c)-(a-b+c)(a-b-c)(用乘法公式計(jì)算)
(6)一個(gè)角的補(bǔ)角比它的余角的2倍還多18度,這個(gè)角有多少度?
解:(1)-3(x2-xy)-x(-2y+2x)
=-3x2+3xy+2xy-2x2
=-5x2+5xy;
(2)(x+2)(y+3)-(x+1)(y-2)
=xy+2y+3x+6-(xy+y-2x-2)
=5x+y+8;
(3)(-2m2n)3•mn+(-7m7n12)0-2(mn)-4•m11•n8
=-8m7n4+1-2m7•n4
=-10m7n4+1;
(4)(3mn+1)(3mn-1)-(3mn-2)2
=9m2n2-1-(9m2n2-12mn+4)
=12mn-5
(5)(a+b+c)(a+b-c)-(a-b+c)(a-b-c)
=[(a+b)2-c2]-[(a-b)2-c2]
=(a+b)2-(a-b)2
=4ab;
(6)設(shè)這個(gè)角為x度
180-x-2(90-x)=18
解得x=18°.
分析:(1)按照整式的混合運(yùn)算順序先去括號,再加減計(jì)算即可解答;
(2)先按照整式的乘法法則計(jì)算,再算減法即可解答;
(3)根據(jù)同底數(shù)冪的乘法,積的乘方,零指數(shù)冪的意義解答即可;
(4)運(yùn)用平方差公式與完全平方公式計(jì)算即可解答;
(5)將(a+b)與(a-b)當(dāng)做一個(gè)整體,運(yùn)用平方差公式計(jì)算,再相減即可解答;
(6)根據(jù)余角補(bǔ)角的定義列方程解答即可.
點(diǎn)評:本題主要考查整式的混合運(yùn)算,熟練掌握整式的混合運(yùn)算順序是解答本題的關(guān)鍵.此外,本題還考查了余角與補(bǔ)角的定義.